引用本文:李凯,苏延旭.含参数不确定和输入时延的线性系统自适应Tube模型预测控制[J].控制理论与应用,2025,42(12):2409~2418.[点击复制]
LI Kai,SU Yan-xu.Adaptive Tube model predictive control for linear systems with parameter uncertainties and input delays[J].Control Theory & Applications,2025,42(12):2409~2418.[点击复制]
含参数不确定和输入时延的线性系统自适应Tube模型预测控制
Adaptive Tube model predictive control for linear systems with parameter uncertainties and input delays
摘要点击 165  全文点击 25  投稿时间:2024-07-24  修订日期:2025-11-11
查看全文  查看/发表评论  下载PDF阅读器   HTML
DOI编号  10.7641/CTA.2025.40395
  2025,42(12):2409-2418
中文关键词  Tube模型预测控制  自适应控制  参数不确定性  输入时延
英文关键词  Tube model predictive control  adaptive control  parameter uncertainties  input delays
基金项目  国家自然科学基金项目(62203001)资助.
作者单位E-mail
李凯 安徽大学 人工智能学院 kkkl846@163.com 
苏延旭* 安徽大学人工智能学院 yanxu.su@ahu.edu.cn 
中文摘要
      模型预测控制(MPC)在现代控制中因其在处理多变量和约束系统中的优势, 得到了广泛应用. 然而, 系统 的不确定性和输入延迟为MPC的设计和实现带来了显著挑战. 本文提出了一种适用于含有参数不确定性和输入延 迟的线性系统的自适应Tube-MPC算法. 首先, 采用状态变量扩展的方法将原始系统转化为增广系统来处理时延问 题, 并设计一种基于时变更新率的自适应更新律进行参数估计, 确保估计误差在有界范围内; 其次, MPC控制器采 用椭球体集合来参数化状态Tube用于捕获状态轨迹, 将离线和在线优化问题转化成半定规划(SDP)问题, 以简化计 算复杂度, 实现了对系统的鲁棒控制; 最后, 通过两组仿真实例验证了所提自适应Tube-MPC算法的有效性.
英文摘要
      Model predictive control (MPC) has been widely applied in modern control due to its advantages in handling multivariable and constrained systems. However, the uncertainties and input delays of the systems pose significant challenges to the design and implementation of MPC. This paper proposes an adaptive Tube-MPC algorithm for linear systems with parameter uncertainties and input delays. Firstly, the original system is transformed into an augmented system using the state variable extension to address the delay problem. An adaptive updating law with time-varying update rates is designed for parameter estimation, ensuring that the estimation error remains bounded. Secondly, the MPC controller uses ellipsoidal sets to parameterize the state Tube to capture the state trajectories. The offline and online optimization problems are converted into semi-definite programming (SDP) problems, simplifying computational complexity and achieving robust control of the system. Finally, two sets of simulation examples are used to verify the effectiveness of the proposed adaptive Tube-MPC algorithm.