引用本文:凌振舫,邹涛.不确定扰动下的打磨机器人动态轨迹规划[J].控制理论与应用,2025,42(12):2487~2496.[点击复制]
LING Zhen-fang,ZOU Tao.Dynamic trajectory planning of polishing robot based on fuzzy compensation model predictive control[J].Control Theory & Applications,2025,42(12):2487~2496.[点击复制]
不确定扰动下的打磨机器人动态轨迹规划
Dynamic trajectory planning of polishing robot based on fuzzy compensation model predictive control
摘要点击 123  全文点击 21  投稿时间:2024-08-24  修订日期:2025-10-23
查看全文  查看/发表评论  下载PDF阅读器   HTML
DOI编号  10.7641/CTA.2025.40452
  2025,42(12):2487-2496
中文关键词  打磨机器人  动态轨迹规划  模糊补偿控制  力反馈  双层结构预测控制
英文关键词  polishing robot  dynamic trajectory planning  fuzzy compensation control  force feedback  dual-layer predictive control
基金项目  广州市室校联合实验室项目(2023A03J0120)资助.
作者单位E-mail
凌振舫* 广州大学机械与电气工程学院 1244275527@qq.com 
邹涛 广州大学机械与电气工程学院  
中文摘要
      针对存在关节约束、摩擦干扰及末端外力扰动等复杂工况下的打磨机器人轨迹规划问题,本文提出一种融 合力反馈的双层结构预测控制轨迹规划方法,旨在实现动态轨迹规划并提升系统干扰能力.首先,上层采用模型预 测控制在理想条件下生成全局最优轨迹;下层通过模糊补偿的预测控制根据轨迹偏差及其变化率实时修正预测控 制输出,同时结合力传感器反馈数据构建动态约束优化模型.最后,通过仿真实验验证了该方法通过分层优化与实 时补偿的协同机制,可以在复杂工况下实现稳定、平滑的轨迹输出.
英文摘要
      To address the trajectory planning challenges of polishing robots under complex working conditions involving joint constraints, frictional disturbances, and external end-effector forces, a dual-layer predictive control method integrated with force feedback is proposed to achieve dynamic trajectory planning and enhance system robustness. The hierarchical framework consists of two layers: the upper layer generates globally optimal trajectories using model predictive control (MPC)underideal conditions, while the lower layer dynamically adjusts the control output through fuzzy-compensated pre dictive control. Simultaneously, force sensor feedback is integrated to construct a dynamic constraint optimization model, which adjusts pressure thresholds based on task requirements to prevent overshoot and ensure safe interaction. Simula tion results demonstrate that the proposed method achieves stable and smooth trajectory tracking in complex environments through the synergistic mechanism of hierarchical optimization and real-time compensation, with significant improvements in both precision and energy efficiency.