| 引用本文: | 王太生,窦立亚,李智卿.预设性能非线性多智能体跟踪控制[J].控制理论与应用,2026,43(1):79~89.[点击复制] |
| WANG Tai-sheng,DOU Li-ya,LI Zhi-qing.Prescribed performance tracking control for nonlinear multi-agent systems[J].Control Theory & Applications,2026,43(1):79~89.[点击复制] |
|
| 预设性能非线性多智能体跟踪控制 |
| Prescribed performance tracking control for nonlinear multi-agent systems |
| 摘要点击 217 全文点击 28 投稿时间:2025-03-12 修订日期:2025-12-23 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2025.50095 |
| 2026,43(1):79-89 |
| 中文关键词 非线性多智能体 预设性能 一致性跟踪 自适应权重径向基函数神经网络(AW-RBFNN) |
| 英文关键词 nonlinear multi-agent systems prescribed performance consensus tracking adaptive weighting radial basis function neural network (AW-RBFNN) |
| 基金项目 国家自然科学基金项目(62103031)资助. |
|
| 中文摘要 |
| 本文研究了非线性多智能体的预设性能一致性跟踪控制问题,与目前大部分非线性多智能体模型不同,考
虑各个智能体状态可能受到的未知外部有界干扰,并且多智能体系统的状态无法直接测量,非线性函数完全未知.
首先,通过引入一种误差转换函数,将具有预定义跟踪误差约束的非线性多智能体系统转换为不受约束但具有期望
性能特征的非线性系统,提出了一种新的自适应权重径向基函数神经网络(AW-RBFNN)系统,用于处理多智能体系
统模型中的未知非线性函数.此外,引入状态观测器用于估计未知的状态变量,并设计了基于AW-RBFNN系统和状
态观测器的控制律,通过李雅普诺夫和预设性能稳定理论分析,证明了闭环多智能体系统的一致性跟踪误差保持在
预定义区域,并且所有闭环信号都保持一致有界,非线性多智能体系统实现了满足预设性能的跟踪控制.通过数值
仿真例子和建模为实际机械系统的非线性多智能体系统跟踪控制实例,将本文基于AW-RBFNN方法与基于多维泰
勒网(MTN)方法进行对比实验,验证了本文基于AW-RBFNN的预设性能协同跟踪控制方法的有效性. |
| 英文摘要 |
| This paper studies the prescribed performance consensus tracking control problem for nonlinear multi-agent
systems (MASs). Unlike most existing nonlinear MAS models, this approach considers unknown external bounded dis
turbances affecting individual agent states, with the MAS states being unmeasurable directly and the nonlinear functions
completely unknown. Anerror transformation function is introduced to convert the nonlinear MAS with predefined tracking
error constraints into an unconstrained nonlinear system exhibiting desired performance characteristics. A novel adaptive
weighting radial basis function neural network (AW-RBFNN) system is proposed to address unknown nonlinear functions
in the MAS model. Additionally, a state observer is employed to estimate unmeasurable state variables, and a control law
is designed based on the AW-RBFNN system and state observer. Through Lyapunov stability theory and prescribed per
formance stability analysis, it is demonstrated that the consensus tracking error converges to a predefined region while all
closed-loop signals remain uniformly ultimately bounded, enabling the nonlinear MAS to achieve prescribed-performance
satisfying tracking control. The effectiveness of the prescribed performance collaborative tracking control method based on
AW-RBFNN is verified by comparing with the multi-dimensional Taylor net (MTN) based method through an numerical
simulation example and tracking control examples modeled of nonlinear agents as actual mechanical systems. |
|
|
|
|
|