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Abstract
In this paper, we present a sampled-data nonlinear extended state observer (NLESO) design method for a class of nonlinear

systems with uncertainties and discrete time output measurement. To accommodate the inter-sample dynamics, an inter-sample
output predictor is employed in the structure of the NLESO to estimate the system output in the sampling intervals, where the
prediction is used in the proposed observer instead of the system output. The exponential convergence of the sampled-data
NLESO is also discussed and a sufficient condition is given by the Lyapunov method. A numerical example is provided to illustrate
the performance of the proposed observer.
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1 Introduction

The existence of various disturbances and model un-
certainties poses major challenges in the design of con-
trol systems, where the situation is further complicated
in sophisticated control applications with demanding
performance requirements such as aerospace industries
and modern precision industries. There are abundant re-

search results addressing challenging problems on anti-
disturbance control of systems with parametric varia-
tions, unmodeled dynamics and external disturbances.
The readers can be referred to [1] and references therein
for recent advances in control techniques for distur-
bance/uncertainty estimation and attenuation.

One major category in anti-disturbance control is
disturbance observer based control (DOBC) approach,
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where disturbance observers are introduced to estimate
and compensate the uncertainties and disturbances.
Based on the observation mechanism, disturbance ob-
servers in both frequency domain [2,3] and time domain
[4, 5] are proposed in the literature. Alternatively, the
method of active disturbance rejection control (ADRC)
( [6, 7]) is also well discussed, where successful indus-
try applications have been achieved such as MEMS gy-
roscopes [8], robotics [9] and high precision motion
control [10]. As a key part of the ADRC control struc-
ture, the extended state observer (ESO) is developed to
estimate uncertainties and disturbances simultaneously
by lumping them into an an extended state as the “total
disturbance” for disturbance elimination purposes.

In recent years, theoretical analysis on the linear ESO
(LESO) and the nonlinear ESO (NLESO) has attracted
more and more research efforts as well. In [8] and [11],
the convergence of LESO is given analytically. Based on
time-varying PD-eigenvalues assignment and Kalman fil-
ter algorithms respectively, adaptive extended state ob-
servers (AESO) in the form of LESO are presented to
improve the performance of ESO and cancel the peak-
ing phenomenon [12, 13]. To have more design flexi-
bility for complicated systems, [12], nonlinear extended
state observer (NLESO) design and analysis are also dis-
cussed for both single-input-single-output (SISO) sys-
tems [14], and multiple-input-multiple-output (MIMO)
cases [15], as well as uncertain lower triangular non-
linear systems [16]. Furthermore, the NLESO method
is improved by replacing constant observer gains with
time-varying gains in [17].

Although most of the results stated above, especially
for NLESO, are based on continuous time, the ESO typ-
ically needs to be implemented in discrete-time in vari-
ous computer-based control applications. The digital im-
plementations of ESO have also received considerable
attention, e.g., different discrete approximation meth-
ods [18], the relationship between sampling periods and
control bandwidth for LESO [19] and incremental algo-
rithm design [20]. In a similar fashion, the discrete form
of NLESO is discussed in [7]. Note that most of the
existing works stated above are designed based on a di-
rect discretization of the plant models. However, many
complications in sampled-data systems can not be fully
addressed by the design methods discussed above, e.g.,
the existence of perturbations of sampling schedule [21],
or control systems with multiple sampling rates [22].

It is noticed that a continuous-discrete observer

method was discussed in [21], where an inter-sample
output predictor was used to predict the inter-sample
dynamics in sampled-data nonlinear observer design.
This design has a hybrid structure because the states
are estimated in continuous time and the predictor is
updated discontinuously only at the sampling time to
correct the estimated state trajectory. Such sampled-
data observer design has been widely investigated re-
cently, e.g., sampled-data high gain observers for net-
worked control systems [23] where sampling periods
are nonuniform, and sampled-data extended high gain
observers with multi-rate control applications in electro-
hydraulic actuator systems [22].

Inspired by this line of research on continuous-
discrete observer design, we propose a sampled-data
extended state observer design with nonlinear gain func-
tion, where the convergence of the proposed observer
is analyzed by a Lyapunov function based method.
Meanwhile, the relationship between the observer error
bound and the observer gain parameters is also derived.
The present work is an extension of [14], which is ca-
pable of generating continuous state estimation based
on sampled-data system measurement. For applications
requiring multiple sampling rates, the proposed design
offers the opportunity to compensating high frequency
disturbances using an up-sampling compensator, while
using the original sampling rate for the rest of control
system. For example, when the proposed ESO is em-
ployed in an multi-rate ADRC control framework as illus-
trated in Fig.1, the inter-sample information (by predic-
tion) can be used to handle high frequency disturbances
by up-sampling the observer output, while the feedback
controller is still running in the original sampling rate to
handle low frequency disturbances. Multi-rate control
systems have been successfully implemented in vari-
ous industry applications such as Hard Disk Drive servo
systems [24].

The rest of the paper is organized as follows: In Sec-
tion 2, some definitions and notations which will be
used in this paper are given. The system and continuous
time ESO formulation are described in Section 3. The
sampled-data nonlinear extended state observer for non-
linear uncertain systems with sampled measurements is
proposed in Section 4, where the exponential conver-
gence of the observer is also given by using Lyapunov
approach. In Section 5, simulation results are presented
to show the effectiveness of the design, followed by
conclusions in Section 6.
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Fig. 1 The diagram of sampled-data control system with NLESO.

2 Notations and definitions

In this section, some mathematical notations used in
this paper are introduced. R = (−∞,+∞) is the set
of real numbers and Rn denotes the set of real vec-
tors of n-dimension. C is the continuous function. ‖ · ‖
presents the euclidian norm on Rn. Some countable set
of time instants is denoted by π = {τk}∞k=0 and satisfies
0 < r = (τk+1−τk) < rmax where r is the sampling period
and rmax is the upper diameter of the sampling partition.

3 Problem formulation

Consider an n-dimensional SISO nonlinear system

y(n) = f (t, y, ẏ, . . . , y(n−1)) + bu + d, (1)

where y ∈ R is the system output, f ∈ C(Rn,R) rep-
resents a possibly unknown nonlinear dynamics of the
system, u ∈ C(R,R) is the input, b is a given constant,
and d ∈ C(R,R) is the external disturbance. Then sys-
tem (1) can be presented in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),
...

ẋn(t) = xn+1(t) + bu(t),

ẋn+1(t) = h,

y(t) = x1(t),

(2)

where f + d, the total disturbance, is set as an ex-
tended state of the system, and let h = ˙f + ḋ, x =
[x1 x2 · · · xn]T ∈ Rn is the state of the system, whose
initial values can be set as xi(t0) for i = 1, 2, . . . ,n. In-
spired by the work of [14], a nonlinear extended state
observer can be designed for system (2),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + εn−1g2(
y(t) − x̂1(t)
εn ),

˙̂x2(t) = x̂3(t) + εn−1g3(
y(t) − x̂1(t)
εn ),

...

˙̂xn(t) = x̂n+1(t) + bu(t) + gn(
y(t) − x̂1(t)
εn ),

˙̂xn+1(t) =
1
ε

gn+1(
y(t) − x̂1(t)
εn ).

(3)

The above observer is a special form of ESO proposed
in [6], where x̂ = [x̂1 · · · x̂n+1] ∈ Rn+1 is the esti-
mated state of ESO, the initial condition can be set as
x̂i(t0), the gain ε describes a small positive constant,
gi, i = 1, 2, . . . ,n+ 1 denote chosen nonlinear functions.
According to [14], the error dynamics of the ESO are ex-
pected to exponentially converge to 0, namely x̂−x→ 0,
as ε→ 0 and t→∞.

Although the above plant system, as well as the
ESO design, can be discretized directly for computer-
based digital implementations, some complications
(e.g., nonuniform sampling systems, or multi-rate sam-



192 C. Tian et al. / Control Theory Tech, Vol. 14, No. 3, pp. 189–198, August 2016

pling systems) cannot be well addressed. Recall the
multi-rate ADRC control architecture depicted in Fig. 1,
we would like to investigate the sampled-date NLESO
design based on discrete time system output and gen-
erate continuous observer output, such that the ESO
output can be up-sampled to handle high frequency dis-
turbances out of the control bandwidth using original
sample rate. For such purposes, we would like to inves-
tigate the sampled-data case of NLESO (3) by applying
the continuous-discrete observer design technique sim-
ilar to [21].

Fig. 2 The diagram of sampled-data system with NLESO.

4 Sampled-data NLESO design

In this section, we consider the sampled-data NLESO
design problem. As depicted in the block diagram in
Fig. 1, the sampled-data NLESO is composed of an inter-
sample output predictor and a NLESO, where the mea-
surement of the system output is only available at each
sampling time. Besides the control input u, the predic-
tion of output w is the other input of the NLESO instead
of the real system output y, and some information of
state estimations is used in the inter-sample output pre-
dictor. The observer is designed in continuous time and
the states of the observer can be potentially sampled
digitally, even with a sampling time different from that
of the output measurement when discretization, thus
facilitates multi-rate control system design.

First, we consider system (1) with the sampled-data
output measurement as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),
...

ẋn(t) = xn+1(t) + bu(t),

ẋn+1(t) = h,

y(τk) = x1(τk),

(4)

where the output data can be measured at each sam-
pling time τk. Then a sampled-data NLESO with output

predictor can be designed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + εn−1g1(
w(t) − x̂1(t)
εn ),

˙̂x2(t) = x̂3(t) + εn−2g2(
w(t) − x̂1(t)
εn ),

...

˙̂xn(t) = x̂n+1(t) + bu(t) + gn(
w(t) − x̂1(t)
εn ),

˙̂xn+1(t) =
1
ε

gn+1(
w(t) − x̂1(t)
εn ),

(5)

where x̂ denotes contious-time estimate state of x. w(t)
is the prediction of output y between two consecutive
sampling instants, which is updated at the start of each
sampling interval. Moreover, the output predictor for the
time interval between two consecutive measurements
can be shown as⎧⎪⎪⎨⎪⎪⎩ ẇ(t) = x̂2(t), t ∈ [τk, τk+1),

w(τk+1) = y(τk+1),
(6)

Then, according to systems (4) and (5) we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ei(t) = xi(t) − x̂i(t), i = 1, 2, . . . ,n + 1,

ηi(t) =
ei(εt)
εn+1−i ,

ew(t) = w(t) − y(t),

ϕ(t) =
ew(εt)
εn , t ∈ [τk, τk+1).

(7)

Note that w(t) − x̂(t) = ew(t) + e1(t) in each sampling
interval. Thus the error equation of system (4) can be
obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇1(t) = η2(t) − g1(η1(t) + ϕ(t)),

η̇2(t) = η3(t) − g2(η1(t) + ϕ(t)),
...

η̇n(t) = ηn+1(t) − gn(η1(t) + ϕ(t)),

η̇n+1(t) = εϑ(t) − gn+1(η1(t) + ϕ(t)),

ϕ̇(t) =
x̂2 − x2

εn , t ∈ (τk, τk+1),

(8)

where

ϑ(t)=
d
dt

( f (εt, x1(εt), . . . , xn(εt)) + d(εt)). (9)

In what follows, we will give the main results of this
paper. First of all, some assumptions are made for the
sampled-data NLESO.

Assumption 1 The unknown functions f , d are con-
tinuously differentiable with respect to their variables,
for some positive constants cj, j = 0, 1, . . . , n and posi-
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tive integer q, such that

|u| + | f | + |ḋ| + |∂ f
∂t
| + |∂ f
∂x
| � c0 +

n∑
j=1

cj|xj|q. (10)

Assumption 2 The solutions xi to system (2) and
disturbance d satisfy |d| + |xi(t)| � m1 for some constant
m1 > 0; i = 1, 2, . . . ,n and t � 0.

Assumption 3 For ∀η = [η1 η2 · · · ηn+1]T ∈ Rn+1,
there exist constants λi, for i = 1, . . . , 4 and positive def-
inite radially unbounded and continuous differentiable
functions V1,W1: Rn+1 → R such that

i) λ1‖η‖2 � V1(η) � λ2‖η‖2,
λ3‖η‖2 �W1(η) � λ4‖η‖2,

ii)
n∑

i=1

∂V1

∂ηi
(ηi+1 − gi(η1)) − ∂V1

∂ηn+1
gn+1(η1) � −W1(η),

iii) | ∂V1

∂ηn+1
| � β‖η‖, | n+1∑

i=1

∂V1

∂ηn+1
| � α‖η‖.

Assumption 4 Functions gi( · ) ∈ C(R,R) are glob-
ally Lipschitz on a compact set ζ of z, namely for
(z1, z2) ∈ R ×R, there exists γ > 0 such that

|gi(z1) − gi(z2)| � γ|z1 − z2|. (11)

Theorem 1 Consider the sampled-data system (4).
If Assumptions 1–4 hold, then the states of the sampled-
data NLESO (5) exponentially converge to the states and
extended state of system (4), namely for σ > 0, there ex-
ists a sufficiently small ε, a ε-dependent T and a positive
bounded rmax such that

|x̂i(t) − xi(t)| � σ, i = 1, 2, . . . , n + 1,
t > T, t ∈ [τk, τk + r), r ∈ (0, rmax]. (12)

Proof Under Assumptions 1 and 2 and the dynamic
of extended state (9), there exists a constant M > 0,
such that |ϑ(t)| �M.

Inspired by [23], we consider the following candidate
Lyapunov function:

U(t) = V1(η(t)) + V2(t)
= V1(η(t)) + θκ(t)|ϕ(t)|2, (13)

where we introduce an additional term V2(t) with re-
spect to the output predictor, θ is a positive constant
which can be computed as follows and κ(t) is a pos-
itive and bounded function. This function satisfies the

following conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
κ(τk) = μ, k ∈N+, μ > 1,

κ̇(t) < 0, t ∈ [τk, τk+1),

κ(τk + r) = μ−1, r ∈ (0, rmax].

(14)

First, under Assumptions 3 and 4, we consider the time
derivative of V1(η(t)) along the solution η(t) to system
(4), and obtain

d
dt

V1(η(t))

=
n∑

i=1

∂V1

∂ηi
[ηi+1(t) − gi(

w(εt) − x̂1(εt)
εn )]

− ∂V1

∂ηn+1
gn+1(

w(εt) − x̂1(εt)
εn ) +

∂V1

∂ηn+1
εϑ(t)

=
n∑

i=1

∂V1

∂ηi
[ηi+1 − gi(η1 + ϕ)] − ∂V1

∂ηn+1
gn+1(η1 + ϕ)

+
∂V1

∂ηn+1
εϑ

�
n∑

i=1

∂V1

∂ηi
(ηi+1 − gi(η1)) − ∂V1

∂ηn+1
gn+1(η1)

+
n+1∑
i=1

∂V1

∂ηi
γ|ϕ| + ∂V1

∂ηn+1
εϑ

� −W(η) + αγ|ϕ| ‖η‖ + εMβ ‖η‖
� −λ3‖η‖2 + αγ|ϕ| ‖η‖ + εMβ ‖η‖. (15)

The following bound regarded to (15) can be derived by
recalling the Young inequality:

∣∣∣γ‖η‖ |ϕ|α∣∣∣ � 1
2

(α2‖η‖2 + γ2|ϕ|2). (16)

Hence (15) can be written as

d
dt

V1(η(t)) � (−λ3 +
1
2
α2)‖η‖2 + εMβ ‖η‖ + 1

2
γ2|ϕ|2.

(17)

Then we obtain the time derivative of V2(t) as

V̇2 = θκ̇|ϕ|2 + 2θκ|ϕ||ϕ̇|
� θκ̇|ϕ|2 + 2θκ

1
ε
|ϕ|‖η‖

� θκ̇|ϕ|2 + θ2κ2|ϕ|2 + 1
ε2 ‖η‖2. (18)

Note that

|ϕ̇| = | ėw

εn | =
1
ε
|η2| � 1

ε
‖η‖. (19)
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Combining (17) with (18), we can obtain

U̇ = V̇1 + V̇2

� −(λ3 − 1
2
α2 − 1

ε2 )‖η‖2 + εMβ ‖η‖

+ (
1
2
γ2 + θκ̇ + θ2κ2)|ϕ|2. (20)

We can choose

κ̇(t) = −θ(κ2(t) + 1), t ∈ [τk, τk + r), r ∈ (0, rmax].
(21)

Then we have

U̇ � −(λ3 − 1
2
α2 − 1

ε2 )‖η‖2 + εMβ ‖η‖ + (
1
2
γ2 − θ)|ϕ|2.

(22)

Choosing
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
θ =

√
1
2
γ2,

λ3 =
α2/2 + 1/ε2

1 − δ , δ ∈ (0, 1).

(23)

Thus, using Assumption 3, we derive

U̇ � −λ3δ‖η‖2 + εMβ ‖η‖
� −λ3δ
λ2

V1 +
εMβ√
λ1

√
V1

� −λ3δ
λ2

U +
εMβ√
λ1

√
U. (24)

By Assumption 3 again, integrating (24) on the interval
[τk, t] yields

U(t) � U(τk)e−
λ3δ
λ2

(t−τk)
+ (
εMβλ2√
λ1λ3δ

)2. (25)

Thus, we have

√
U(t) �

√
U(τk)e−

λ3δ
2λ2

(t−τk)
+
εMβλ2√
λ1λ3δ

. (26)

According to Assumption 3, we obtain

‖η(t)‖ �
√

V(η(t))
λ1

�

√
U(τk)
λ1

e−
λ3δ
2λ2

(t−τk)
+
εMβλ2

λ1λ3δ
, t ∈ [τk, τk + r).

(27)

Consider (12)–(14) and the fact that ϕ(τk) = 0, η(τk) =
η(τ−k ) at the time instant t = τk, then we will have

U(τk) = V1(η(τk)) + θκ(τk)|ϕ(τk)|2
= V1(η(τk)) + θμ|ν(τk)|2
� V1(η(τ−k )) + θκ(τ−k )|ϕ(τ−k )|2 � U(τ−k ). (28)

Then, we have

U(τk) � U(τk−1)e−
λ3δ
λ2

(τ−k −τk−1)
+ (
εMβλ2√
λ1λ3δ

)2. (29)

U(t) � U(τk−1)e−
λ3δ
λ2

(t−τk−1)
+ (
εMβλ2√
λ1λ3δ

)2(1 + e−
λ3δ
λ2

(t−τk)).

(30)

Thus, we obtain

√
U(t) �

√
U(t0)e−

λ3δ
2λ2

(t−t0)
+ Δ, (31)

where Δ =
εMβλ2√
λ1λ3δ

√
1 +

k∑
i=1

e−
λ3δ
λ2

(t−τi) is bounded.

Thus, we can write (27) as

‖η(t)‖ �
√

U(t0)
λ1

e−
λ3δ
2λ2

(t−t0)
+
Δ√
λ1
, t ∈ [τk, τk + r),

(32)

which indicates, for t ∈ [τk, τk + r)

|ei(t)| = εn+1−i|ηi(
t
ε

)|

� εn+1−i(

√
U(t0)
λ1

e−
λ3δ
2λ2

(t/ε−t0)
+
Δ√
λ1

). (33)

It means that the observer error is ultimately bounded
and we can choose ε small enough to reduce the bound
of error. Moreover, the right hand side of (30) converges
exponentially to 0, as ε → 0. In addition, we can com-
pute the value of rmax as

rmax =
1
θ

(arctan(μ) − arctan(μ−1)). (34)

5 Numerical simulations

In this section, a numerical example is given to il-
lustrate the effectiveness of the proposed observer. In-
spired by [14] and [17], consider the following nonlinear
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system:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋ1(t) = x2(t),

ẋ2(t) = f (t, x) + u(t) + d(t),

y(τk) = x1(τk).

(35)

We take the system input u(t), external disturbance d(t),
and nonlinear function f (t, x) in the above system re-
spectively as

u(t) = 1 + sin t,

d(t) = −0.6 cos(2t) + sin(0.4πt + 1) − 0.8,

f (t, x) = −x1(t) − 2x2(t) + sin(x1(t) + 2x2(t)).

By following the design procedure in the above section,
We can design the following sampled-data nonlinear ex-
tended state observer

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) +
3
ε

(w(t) − x̂1(t)) + ε�(
w(t) − x̂1

ε2 ),

˙̂x2(t) = x̂3(t) + u(t) +
3
ε2 (w(t) − x̂1(t)),

˙̂x3(t) =
1
ε3 (w(t) − x̂1(t));

w(t) = x̂2(t), t ∈ [τk, τk+1),

w(τk+1) = y(τk+1),

(36)

where the nonlinear function � : R→ R is defined as

�(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
5
, ρ ∈ (−∞,−π

2
],

1
5

sinρ, ρ ∈ (−π
2
,
π
2

],

1
5
, ρ ∈ (

π
2
,+∞).

(37)

In this case, the global Lipschitz nonlinear functions gi

in the ESO in (5) can be specified as

g1(z) = 3z + �(z), g2(z) = 3z, g3(z) = z.

It is straightforward that

|gi(z1) − gi(z2)| � 16
5
|z1 − z2|. (38)

Note that Assumptions 1–4 are all satisfied. Thus, (36) is
a well-defined sampled-data NLESO for system (35) ac-
cording to Theorem 1. Now we can define the Lyapunov
function as

U(t) = V1 + V2

= (ηTPη +
� η1

0
�(s)ds) + θκ(t)|ϕ(t)|2. (39)

The positive definite matrix P can be chosen according
to [14], and the convergence can be guaranteed by the
method presented in Section 4.

The initial states of the plant (30) and the ESO (31) are
set as (1, 1)T and (0, 0, 0)T, respectively. The time step
for calculation is 0.005 s, and the sampling time of the
output measurement is r = 0.01 s.

We now take the gain parameter as ε = 0.1 and

ε =
1
30

. As depicted in Fig. 3 and Fig. 4, it can be clearly
seen that the states x̂1, x̂2, x̂3 of the designed sampled-
data NLESO track the states of the plant and the ex-
tended state very well with high observer gain. More-
over, the tracking performance of the observer is further
improved when the parameter ε decreases. In addition,
the relationship between prediction w and the output y
is also illustrated in Fig. 3 (d) and Fig. 4 (d).
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Fig. 3 Numerical simulations for system (32) by sampled-data NLESO with ε = 0.1. (a) x1 and x̂1. (b) x2 and x̂2. (c) x3 and x̂3. (d)
y and w.

Fig. 4 Numerical simulations for system (32) by sampled-data NLESO with ε = 1
30

. (a) x1 and x̂1. (b) x2 and x̂2. (c) x3 and x̂3. (d)
y and w.

6 Conclusions

In this paper, a sampled-data nonlinear extended
state observer for uncertain nonlinear systems subject
to discrete time measurement was developed, where
the inter-sample dynamics and sampling schedule were
considered. The exponential convergence of the ob-
server was analyzed by introducing a Lyapunov func-

tion chosen for hybrid systems. The relations between
the observer error bound and the observer parame-
ters were explicitly given. The numerical simulation re-
sults demonstrated the convergence of the proposed ob-
server and inter-sample output predictor. Future works,
along this line of research, include sampled-data ADRC
or sampled-data output feedback control based on the
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proposed observer, as well as their industrial applica-
tions.
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