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Abstract
Due to its capability of solving decision-making problems involving multiple entities and objectives, as well as complex action

sequences, game theory has been a basic mathematical tool of economists, politicians, and sociologists for decades. It helps them
understand how strategic interactions impact rational decisions of individual players in competitive and uncertain environment, if
each player aims to get the best payoff. This situation is ubiquitous in engineering practices. This paper streamlines the foundations
of engineering game theory, which uses concepts, theories and methodologies to guide the resolution of engineering design,
operation, and control problems in a more canonical and systematic way. An overview of its application in smart grid technologies
and power systems related topics is presented, and intriguing research directions are also envisioned.
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1 Introduction
Game theory is the study of rational decision making

among strategic participants, who pursue best payoffs
for themselves, while taking into account the interaction
of their profits among others and their abilities to gather
information. In short, a game is the collection of several
interdependent decision-making problems, in which ev-
ery decision maker, also called a player, must react to
other players’ choices rationally.

The first influential monograph [1] that established the

foundations of game theory was published in 1944, by
Von Neumann and Morgenstein, who systematically de-
scribed the constituents, rules, and outcomes of a game
for the first time. The matrix game formulation intro-
duced in [1] not only provides a concise characterization
for a certain class of zero-sum game, but also a canonical
modeling and analyzing paradigm for decision making
under uncertainties. In early 1950s’, Nash proposed the
models and solutions, later called Nash equilibrium, for
general non-cooperative games in [2] and [3], which
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brought him a Nobel prize in 1994. The third milestone
was the evolutionary game theory [4–6], which was de-
veloped by Smith in 1970s. Motivated by observations
of animal behaviors, evolutionary game provides a dy-
namic view on the equilibrium as the consequence of
repeated actions and learning from a biological perspec-
tive.

Although game theory originated from economics
studies, it also appeared to be a powerful approach
to design robust controllers against worst-case distur-
bances [7]. The past a few years have witnessed precip-
itously increasing interests in the engineering applica-
tions of game theory. Undoubtedly, game theory have
been an indispensable methodology for modern strate-
gic decision making. A recent monograph [8] reveals the
connection between game theory and traditional meth-
ods for optimal decision making, and formalizes the pro-
cedure of applying game theory methods in engineering
problems, which is referred to as the “Engineering Game
Theory”.

In fact, the terminology “Engineering Game Theory”
is inspired by the phylogeny of control theory. In 1948,
Wiener published the famous bookCybernetics: Or Con-
trol and Communication in the Animal and the Ma-
chine [9] (Cybernetics for short), which has been rec-
ognized as the cornerstone in the field of control the-
ory. However, in the beginning, there had been a de-
bate on its scientific value: scientists criticized its ob-
scurity, while engineers criticized its lack of systematic
design procedures. It was not until H. S. Tsien issued his
book Engineering Cybernetics [10], which reported im-
portant applications of Wiener’s theory in aviation, nav-
igation, electronics, and communication technologies,
and proposed canonical controller design procedures,
that the merit of Cybernetics had been widely acknowl-
edged. In analogy to Tsien’s terminology and attempt
which streamlined engineering design principles of con-
trol theory, engineering game theory refers to concepts,
theories and methodologies which guide the resolution
of engineering design, operation, and control problems
with canonical and stylized procedures.

This introductory paper is organized as follows. Fun-
damentals of game theory are reviewed in Section 2, in-
cluding cooperative game, non-cooperative game, and
evolutionary game. The central idea and major attempts
of engineering game theory are presented in Section 3.
The overview of smart grid applications are surveyed in
Section 4. Conclusions are drawn in Section 5.

2 Fundamental game-theoretical concepts
This section is dedicated to an outlook of three major

branches of game theory: Noncooperative game the-
ory, cooperative game theory, and evolutionary game
theory. They can be further classified according to cer-
tain properties, such as the number of stages (static
games, dynamic games, and differential games), the
structure of information, (perfect and imperfect infor-
mation games; complete and incomplete information
games), type of strategies (pure strategy games and
mixed strategy games), and so on.

2.1 Noncooperative game theory
This branch focuses on the strategic decision-making

problem of selfish players with conflicting utilities over
the strategy space. The payoff of each player is not only
influenced by his own decision, but also depends on
the actions of others. In a static setting, all players make
decisions in one shot without knowing rivals’ actions.
Even if the strategies are not selected synchronously,
the game is still called a simultaneous one because each
player is not aware of decisions made by others. Static
games are known as the normal form games. In contrast,
in a dynamic setting, players can observe the outcome
of the previous stage, and based on which react to rivals’
decisions adaptively in the next round. Time plays a cen-
tral role in dynamic games, which are usually referred
to as sequential, extensive or repeated games. In what
follows, the definition and solution concepts of nonco-
operative games will be reviewed. More details can be
found in [8].

Definition 1 A static noncooperative game has
three components: the set of players N , the sets of
strategies (Ai)i∈N , and the utility functions (ui)i∈N . Let ai

be the pure strategy of i ∈ N , and a−i be the strategies of
remaining players except that of player i. When playing
the game, each player chooses an action ai ∈ Ai and
endeavours to optimize his utility function ui(ai, a−i). A
mixed strategy of player i refers to a certain assignment
of probability to each pure strategy ai ∈ Ai, which allows
a player to randomly select a pure strategy.

To formulate a dynamic game, one needs to specify
additional components, such as information sets which
reflect the awareness of knowledge among players, and
histories which represent sets of past actions. Please
bear in mind that the notion of action does not coincides
with that of a strategy in a dynamic game. An action is a
move taken by a player at a certain stage of the game; a
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strategy is a complete plan which informs a player how
to move under every possible situation throughout the
game (interested readers are referred to [11] for more
detailed descriptions). While in a static game, the terms
action and strategy can be used interchangeably.

Noncooperative game theory aims to characterize
the outcome of such an interactive and computative
decision-making process, and provide suitable method-
ologies and algorithms for computing the outcome.
Nash equilibrium is the most important solution con-
cept for static noncooperative games. It portrays a state
at which no player can benefit from changing his strategy
unilaterally. Hence no one has the incentive to deviate
from that state. The pure strategy Nash equilibrium is
defined as follows.

Definition 2 A (pure-strategy) Nash equilibrium is
a vector a∗ ∈ A (where A = ⊗i∈NAi is the Cartesian
production of the strategy sets) such that

ui(a∗i , a
∗
−i) � ui(ai, a∗−i), ∀ai ∈ Ai. (1)

Nash equilibrium depicts a stable outcome of a non-
cooperative game that can be reached and maintained
spontaneously by the players in a distributed manner
without coordination. However, only the existence of
a mixed-strategy Nash equilibrium can be guaranteed.
Conditions which ensure the existence of a pure-strategy
Nash equilibrium can be restrictive. In addition, a game
can have multiple equilibria. Identifying a meaningful
and desirable equilibrium is challenging and remains
an open problem, especially in power system applica-
tions [12].

Nash equilibrium underlies the equilibrium concepts
of several other types of noncooperative games. For in-
stance, the equilibrium of an incomplete information
static game is called Bayes-Nash equilibrium; the equi-
librium of a complete information dynamic game is
named sub-game perfect Nash equilibrium; the equi-
librium of an incomplete information dynamic game is
referred to as perfect Bayes-Nash equilibrium.

2.2 Cooperative game theory
Noncooperative games are completely competitive,

in which players are unable to coordinate with each
other due to the lack of binding agreements for cooper-
ation. However, in the presence of certain protocols the
players have agreed on, they may be able to improve
their overall utility by acting as an alliance. Cooperative
games investigates the incentive for individual players

which encourages them form a coalition and the im-
putation of total coalition revenue. Cooperative game
theory encompasses two branches : coalitional games
and Nash bargaining games.

A coalitional game focuses on what group will emerge
rather than what individual players can do. In a stable
coalition, no subset of players can unilaterally improve
their outcomes. Three solution concepts of a coalitional
game are introduced below.

The first concept is core, whose modern definition
was introduced in [13]. Core is the set of feasible impu-
tations under which no sub-coalition has a total payoff
that is greater than the sum of its players’ payoffs. The
core may contain none, only one, and infinitely many
elements. To avoid an empty core, the ε-core is intro-
duced in [14], which is always non-empty. The value ε
represents a penalty for leaving the grand coalition.

The second concept is nucleolus [16], which provides
an imputation with minimum dissatisfaction of players.
If the core is nonempty, the nucleolus is unique and
resides in the core, thus it is group and individually ra-
tional. The nucleolus is a promising scheme, as it com-
bines a number of fairness consideration with stability
criteria.

The third concept is Shapley value [15], which assigns
the total coalitional surplus among players according to
their marginal contributions. Shapley showed it satisfied
efficiency, symmetry and additivity, and most important
of all, it could provide a unique solution of a cooperative
game, no matter whether the core is empty or not.

Nash bargaining game appears in the situations where
players have to reach an agreement on the bargaining
set, which is usually a Pareto set, so as to avoid their
worst-case outcome as much as possible. In essence,
the Nash bargaining game focuses on the negotiation of
a fair outcome when the utility is not transferable.

Nash proposed the first bargaining game model in
early 1950s [17, 18], which characterized a fair com-
promising outcome among players based on simply in-
formation about their preferences. Nash provided sev-
eral axioms to guarantee the efficiency and fairness of a
bargaining solution: Pareto optimality, symmetry, inde-
pendence of irrelevant alternatives, and invariance with
respect to linear utility transformations. Nash further
showed that the bargaining solution is unique and can
be recovered from a single objective optimization prob-
lem.

Nash bargaining game is an appropriate and convinc-
ing method to balance multiple conflicting design ob-
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jectives. In spite of its advantages, the bargaining theory
relies on the convexity of bargaining region. Real world
optimization models usually render non-convex feasible
regions, which will give rise to a non-convex bargaining
problem. In such circumstance, only a local solution can
be found quickly.

2.3 Evolutionary game theory
Traditional game theory assumes that players are ra-

tional: they are always able to identify the best strategy,
which is somehow restrictive. In 1970’s, it underwent
a transition to evolutionary game theory after Maynard
Smith revealed the connection between Darwin’s bio-
logical evolutionary theory and the dynamics to reach
an equilibrium of a game [19], called the replicator dy-
namics. Evolutionary game theory puts more emphasis
on the dynamical behavior of strategy change.

Different from a classical game where players are
clearly defined and fixed during the course of play. In
contrast, players in an evolutionary game are changing
over time, and the ultimate driving force is a replicator
who can make approximately accurate copies of itself.
The substance of a replicator can be a gene, a strategy,
a species, and so on. A solution of an evolutionary game
is called an evolutionarily stable strategy (ESS) which, if
adopted by a population in a gaming environment, can-
not be invaded by alternative strategies (populations)
that are initially rare. ESS has some connection with a
mixed strategy equilibrium. Hawk-Dove game is a very
famous example of ESS. The main concept of ESS helps
develop deeper understanding of dynamical systems in
biology and social sciences.

3 Basic scientific problems in engineering
game theory

3.1 Motivations of engineering games theory
As a complicated cyber-physical network that inte-

grates sophisticated energy production, system control,
communication, and information technologies, the de-
signing, planning, operation, and control of the modern
smart grid renders multi-objective optimization prob-
lems with multiple decision makers and uncertainties.
At the generation side, the high penetration of volatile
renewable energies introduces notable uncertainties in
energy production. At the distribution side, load aggre-
gators are behaving more active in response to real-

time energy prices encouraged by demand response
programs. In the merging trend of energy internet, the
uncertain and competitive characteristics of the net-
worked heterogeneous energy systems will become
more prominent, which call for sophisticated and sys-
tematic methodology to overcome technical challenges
at different levels. More precisely, there is an urgent
need to develop novel methods endowed with the fol-
lowing functionalities:

1) Compromising multiple conflicting targets;
2) analyzing and coordinating strategies in interde-

pendent optimization problems with multiple decision
makers and complex action sequences; and

3) hedging against uncertainty.
The superiority of game theory is apparent in meeting

the former two requirements. As for the last one, our
motivation is explained as follows. On the one hand,
as the human decision maker must determine his strat-
egy without exact information on the future realization
of uncertain factors, a prudent choice will be planning
for the worst-case outcome, so as to be able to cope
with all possible situations. In this regard, a zero-sum
game can be formulated in which the uncertainty is
regarded as a virtual player that always has an utility
opposite to that of the human decision maker. On the
other hand, with the uncertainty rolling in over time, the
human decision maker can deploy corrective actions to
compensate adverse effects brought by the uncertainty,
which can be modeled as a dynamic game. In this con-
text, game theory provides a plausible framework that
can address many challenging problem involving multi-
ple decision agents and uncertainties. In what follows,
we summarize four major scientific problems that en-
gineering game theory in [8] deals with via systematic
synthesis.

3.2 How to solve multi-objective optimization prob-
lems via static games?

In a multi-objective optimization problem, several
conflicting targets should be coordinately optimized.
The solution concept refers to the Pareto optimal so-
lution, or non-dominated solution, which is defined as
a state in which it is unable to improve an individual
objective without compromising at least one other ob-
jective. Traditional multi-objective optimization theory
aims to seek the Pareto front, or a set of uniformly dis-
tributed Pareto optimal solutions. Due to the lack of a
uniform criterion, it is sometimes difficult to determine
a fair tradeoff from infinitely many Pareto solutions. The
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user has to decide one strategy for deploying according
to his own preferences, which is somehow subjective.

To overcome this difficulty, the multi-objective op-
timization problem is considered as a static game, in
which each objective plays the role of a player, whose
utility is influenced by the strategies of other players.
Despite of their similarities, a static game and a multi-
objective optimization also exhibits clear distinctions: in
the former one, decision variables are separately con-
trolled by individual players; in the latter one, one cen-
tral authority coordinates individual objectives via ad-
justing all decision variables. This difference leads to the
discrepancy between Nash equilibrium and Pareto so-
lution. Engineering game theory provides two options
to solve a multi-objective optimization problem [8]. The
first one treats it as a noncooperative game and recovers
a single Nash equilibrium as the solution. The second
one considers it as a Nash bargaining game and com-
putes a bargaining solution, which is also Pareto opti-
mal. Computing the Pareto front is not the main focus
of engineering game theory.

3.3 How to solve robust optimization problems via
concepts of zero-sum game?

It has been reported that optimal solutions of mathe-
matical programs can be extremely sensitive to param-
eter perturbations, thus a solution in the nominal case
often appears to be highly infeasible or suboptimal in
practice [20]. This is particularly the case for power sys-
tem optimization problems with renewable energy gen-
erations. Optimization problems affected by uncertain
parameters has been a focus of the operational research
community for a long time.

Engineering game theory tackles such problems via
zero-sum games [8]. One player is the human decision
maker who wishes to maximize his profit. The other one
is the nature, who seeks the most threatening strategy by
trying to minimizing its rival’s profit. This motivation has
been clarified in Section 3.1. Engineering game theory
offers flexible ways to model different decision-making
patterns. If all strategies should be deployed before un-
certainty is known, the situation can be formulated as
a static game; If corrective actions are allowed with un-
certainty being observed over time, the process can be
depicted by a dynamic game. Although the decisions
offered by zero-sum game models could be somehow
conservative, it is still desired by power systems, as the
consequence of failures may be catastrophic, and secu-
rity is explicitly guaranteed by taking into account the
worst-case outcome.

3.4 How to design robust controller via concepts of
differential game?

Methods for solving optimal control problems rest
on two different fundamental principles: Pontryagin’s
maximum principle and Bellman’s optimality principle.
They are suitable for deterministic problems, and can
boil down to the Hamilton-Jacobi-Bellman (HJB) equa-
tion under certain conditions. However, uncertainties
are inevitable in real-world engineering systems, such
as inexact system parameter and unmodeled dynamics,
which may have a great impact on the performance of
the optimal controller.

It was Isaacs pioneered the theory of differential
games [21], which enabled an extension of optimal con-
trol problems with multiple participants in a noncoop-
erative game theoretical setting. Similar to the robust
optimization, the most extreme case comes down to a
zero-sum game, in which the nature pursues a diamet-
rically opposite objective against the designer. The two-
person zero-sum differential game has been extensively
studied in control theory in the sense of robust H∞ con-
trol problem [22], where the equilibrium yields a saddle
point. For linear dynamic systems, developing an analyt-
ical solution is equivalent to solving an algebraic Riccati
inequality. For nonlinear dynamic systems, computing
the saddle point relies on solving a Hamilton-Jacobi-
Isaacs (HJI) partial differential inequality, which remains
an open problem. Engineering game theory introduces
three tractable methods for the challenging saddle point
problem of affine nonlinear dynamic systems, includ-
ing a variable-scale feedback linearization approach, a
Hamilton system approach, and the approximate dy-
namic programming approach [8]. They share a feature
in common that a saddle point can be recovered without
solving the HJI partial differential inequality.

3.5 How to solve multi-level optimization problems
using concepts of dynamic game?

A multi-level optimization problem is a hierarchy of
several optimization problems. The most representative
one is the bilevel program, in which two decision mak-
ers act sequentially. The so-called leader optimizes his
objective subject to physical constraints, which depend
on his own strategy as well as the optimal choice of a so-
called follower. The strategy of the leader also influences
the feasible set and the utility of the follower. In view of
such an interaction, when the leader makes decisions,
he must consider the reaction from the follower. In fact,
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the first formulation of the bilevel program can be traced
back to the Stackelberg game appeared in [23], and the
modern mathematical formulation is proposed in [24].
Due to its strength on describing sequential decision
making problems, there have been fruitful outcomes in
theoretical development and engineering applications of
bilevel optimization in the past decades [25].

Bilevel programs belong to the category of non-
convex optimization problems. The complexity of solv-
ing a general bilevel program, and even validating local
optimality for a given solution, have been shown to be
NP-hard [25]. Commonly used constraint qualifications
are violated at every feasible point, preventing the di-
rect application of commercial nonlinear programming
solvers.

In light of the connection between bilevel programs
and dynamic games, the analytical method of dynamic
game theory, i.e., the backward induction, has been
used to develop the single-level equivalence of bilevel
programs [8]. More specifically, the follower’s optimiza-
tion is replaced by its first-order optimality condition,
say, the KKT optimality condition, which is included in
leader’s constraints. This replacement portrays how the
leader predicts the best response from the follower in
game theoretical language.

Moreover, engineering game theory entails a gen-
eralization of the standard bilevel program to include
multiple leaders in the upper level [8], resulting in a
multi-leader-follower game [26], or an equilibrium pro-
gram with equilibrium constraints [27]. The Nash equi-
librium among leaders can be computed using the best-
response iteration method similar to a traditional nonco-
operative game. Nevertheless, due to the non-convexity
of the multi-leader-follower game, a pure-strategy Nash
equilibrium may not exist; even if one does exist, the
best-response procedure may not converge, unless the
initial point is close enough to the true equilibrium.

3.6 Connections with other disciplinary
According to above discussions we can see that en-

gineering game theory intertwines with a number of
disciplines in control and optimization studies. A brief
comparison is provided in Table 1. Game problems in
engineering usually involve multiple players with partly
or completely conflicting objectives, or uncertainties re-
sulting from inexact parameter, unmodeled factors, and
expected contingencies. Uncertainty is treated as a vir-
tual player who pursues an opposite objective against
the human decision maker. A traditional optimization

problem can be regarded as a special game where only
one player exists. It should be pointed out that despite
several similarities between a noncooperative game and
a multi-objective optimization problem, they are con-
ceptually different because the latter describes the co-
ordination among multiple payoffs of only one decision
maker, which is more similar to a cooperative game.

Table 1 A comparison of game and other disciplines.

Number of players
Number of stages

Single Multiple

Single Static
optimization

Static
game

Multiple Dynamic
optimization

Dynamic
game

Continuous Optimal
control

Differential
game

Needless to say, owing to the diversity of objectives,
constraints, and competition patterns, the existence and
uniqueness guarantee of equilibria of engineering games
is non-trivial. Computing an equilibrium is also much
more challenging than solving a traditional optimization
problem. Approaches with pertinence to special prob-
lems are recommended, in accordance with the discus-
sions in [8]. For the Bargaining game model of multi-
objective optimization, it can be cast a traditional convex
optimization problem. For non-cooperative games, if ev-
ery single player’s problem is strongly convex and can
be readily solved, the best response algorithm will be a
good option; otherwise, the stationary method, which
solves the concentrated KKT system consisting of KKT
optimality conditions of individual players’ problem, is
one possible alternative.

4 Applications in power system
The modern power system encompasses various

stakeholders (such as generation companies, grid
operators, distribution utilities, and auxiliary service
providers), conflicting optimization targets (including
production cost, emission reduction, security enhance-
ment), and uncertainties (resulting from renewable
power generation and contingencies). To implement re-
liable and efficient power generation, transmission, and
distribution, solid mathematical tools that help make
scientific decisions at different levels from planning, op-
eration, and control are in great need. The heteroge-
neous and uncertain nature of modern power systems
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inspires the exploration of engineering game theory for
mitigating technical challenges at different levels. In this
context, this section provides an overview on engineer-
ing game theory applications in relevant topics of power
systems and smart grid technologies, which exhibits a
clear outlook on the success and possible challenges of
adopting game theoretical methods in future energy sys-
tems and more broader classes of engineering decision-
making problems. A more thorough and detailed survey
can be found in [28].

4.1 Power market
Due to its capability of capturing interactions among

interdependent decision-making problems, game theory
has been the canonical and prevailing paradigm adopted
in power market studies. For example, the celebrated
Cournot model and Bertrand model for quantity and
price competition [29], respectively, are basic means
for market analysis.

In more dedicated wholesale power market research,
generation companies bid their offering prices, and the
independent system operator clears the market accord-
ing to an optimal power flow problem with fixed bidding
prices, determining the contract power of each units as
well as the locational marginal prices of electricity [12].
Given this bilevel structure, the strategic bidding prob-
lem gives rise to multi-leader-follower games, which
have been studied in [12, 27, 30, 31]. A common fea-
ture is that the market clearing problem is modeled as
a linear program or a convex quadratic program in the
lower level, which can be replace by the KKT optimality
condition, and the market equilibrium can be found by
solving mathematical programs with complementarity
constraints through best-response iterations. More re-
cently, the bilevel game approach has been applied to
the analysis and design of energy markets with renew-
able generations [32–35], showing its strong vitality in
this line of research.

4.2 Power system planning
Power system planning is one of the most important

subject of electrical engineering. It provides references
for sitting and sizing of generation/storage equipment as
well as upgrading of the network components, such as
substations and transmission lines. A proper expansion
planning can bring enormous social and economic bene-
fits. Because the typical time frame of planning problem
goes up to one or two decades, the decision maker must
balance short-term and long-term revenues, investment,

and reliability. Moreover, if multiple investors are en-
gaged, the power system planning is an emblematical
multi-agent and multi-objective decision-making prob-
lem with uncertainty. In this regard, engineering game
theory is playing an increasingly important role in this
area.

The Cournot model is used in [36] to formulate the
competitive generation expansion planning, in which
each firm maximizes his profit given all other firms’
quantity decisions. The Shapley value is employed in
[37] to coordinate the expansion income most effi-
ciently. The competitive generation expansion planning
is formulated as a multi-leader-follower game with in-
complete information in [38], in which the upper level
decides investors’ planning and energy/reserve bidding
strategies. The lower level involves the market clearing
problem which determines the electricity prices. Simul-
taneous generation and transmission expansion plan-
ning is studied in a similar manner in [39].

Noncooperative game is introduced for the planning
of a grid-connected hybrid power system comprised of
wind turbines, photovoltaic panels, and storage batter-
ies [40]. Four different coalition forms are also investi-
gated. Imputation schemes are discussed in [41]. The
static reserve capacity planning with high penetration of
wind power is formulated as a zero-sum game in [42],
which aims to find the minimum reserve capacity while
keeping the system reliability index within a desired
value.

4.3 Power system dispatch
The main target of power system dispatch is to main-

tain a stable, reliable, and economic operation condi-
tion. However, high penetration of renewables intro-
duces remarkable uncertainty in the generation side,
which greatly challenges load balancing in real time.
In engineering game theory, uncertainties of renewable
power output is treated as a virtual player, i.e., the na-
ture, which seeks the most unfavorable strategy of the
grid, while the system operator has to find out a feasible
generation dispatch in response to the strategy of the
nature.

The gaming interpretation of power system robust
dispatch is discussed in [43], in which a zero-sum two-
stage dynamic game model is suggested for power sys-
tem dispatch with electric vehicles. In order to model
both preventive and corrective actions, the adaptive ro-
bust optimization, which is a three-stage dynamic game,
is firstly applied to unit commitment problem [44–46].
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The three-stage dynamic game approach for more gen-
eral power systems operation problems is investigated
in [47], and further applied to a joint energy and reserve
dispatch problem in [48].

The three-stage dynamic game can be solve by the
Benders decomposition algorithm [45, 46], or the con-
straint and column generation algorithm [49]. To gener-
ate a cut, it is necessary to solve a two-stage dynamic
game, which can be transformed into a bilinear pro-
gram [50]. Bilinear programs are NP-hard. To retrieve
a global optimal solution, the mixed-integer linear pro-
gramming method in [48, 51] can be used; otherwise,
the mountain climbing method [52] can find a local so-
lution efficiently.

For a multi-objective dispatch problem, Nash bargain-
ing criterion is employed to compromising conflicting
targets [53, 54], such as generation cost and carbon
emission. Uncertainty is taken into account in a multi-
objective dispatch problem in [55].

4.4 Power system control
Power systems may experience disturbances during

operation frequently, such as load perturbation, mea-
surement error, line tripping, generator outage. Robust
control is the most representative application of differen-
tial game theory. Excitation system disturbance attenua-
tion is studied in [56,57]. Robust excitation controller for
larger generation units is designed based on the saddle
point principle in [58, 59]. Approximate dynamic pro-
gramming is used to compute the saddle point, and
design load-frequency controller with large-scale wind
power integration in [60], and supplementary reactive
power control for wind farms to enhance power system
stability in [61].

A game theoretic approach for controlling sources and
loads in small-scale direct current power systems is pro-
posed in [62]. Moreover, Nash bargaining approach is
recommended for improving the efficiency of the equi-
librium of a non-cooperative game between two loads.
A differential game based approach is devised in [63] for
the optimal control of load players during a cold start.
It minimizes losses and achieves a desired steady-state
operating point based on local measurements without
communications. A differential game based cooperative
control scheme is proposed in [64] for coordinating load
frequency control and tie-line scheduling. It is shown
that the cooperative scheme is promising to reduce the
regulation burden and improve system dynamic perfor-
mance.

4.5 Micro-grids and distributed generation
Micro-grid consists of a connected group of dis-

tributed generators such as photovoltaic panels and
wind turbines and local demands in a small geographical
area. It can be operated both in grid-connection or island
mode. Different from a traditional power grid, defining
a centralized operation and control objective for micro-
grids is more difficult, because of the heterogeneous
nature of the utilities, which often include electric ve-
hicles cars, heating devices, energy storage equipment,
diesel generators, distributed renewable units, and so
on. To this end, it is natural to investigated the appli-
cation of distributed coordination techniques enabled
by game theory in microgrid operation and control. The
game theory implementation is also motivated by the
fact that microgrid participants can respond very quickly
to changing operating conditions. In this respect, four re-
search directions are open for engineering game theory,
which have already received wide attentions.

1) Energy exchange between among DGs, microgrids,
and distribution networks, electricity pricing, distribu-
tion control and optimization via cooperative and non-
cooperative games [65–68].

2) Grid impacts of uncertain generation resources, ro-
bust energy management via zero-sum game and robust
optimization [69–72].

3) Electricity pricing, generation dispatch, and equi-
librium in the retail market [73–76].

4) Communication structure and cyber-physical secu-
rity of networked microgrids [77–79].

4.6 Demand response
Demand-side management is an essential practice in

the smart grid which provide opportunities to smooth
the load profile over time by shaving peaks and filling
valleys. Provided with financial incentives, customers
would like to reduce part of their energy consumptions
or shift electricity usages during peak hours. Demand-
side management entails interplays between two enti-
ties: utility companies and consumers. The latter often
includes smart buildings, storage companies, and elec-
tric vehicles.

Efficient pricing schemes that could encourage load
reshaping plays a central role in demand response pro-
grams. A Stackelberg game based pricing approach is
proposed for electricity retailers in a demand response
market [80]. The similar method is applied in [81] to
determine the optimal contract price of distributed gen-
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erators in distribution systems. An optimal time-of-use
pricing scheme is described in [82]. Utility functions for
the provider and users are properly designed, and the
equilibrium is derived using backward induction. More
pricing methods can be found in [83].

A distributed energy management approach is devel-
oped in [84] based on game theory. A best response al-
gorithm is used to find the Nash equilibrium while ensur-
ing fairness and protecting privacy. The similar problem
with load prediction and real-time adjustment is model
as a generalized Nash equilibrium problem in [85]. An
iterative algorithm is employed to implement the dis-
tributed energy management, which converges to the
variational equilibrium, i.e., a special Nash equilibrium
at which global constraints share the same shadowing
prices in each players’ problem. A Stackelberg game be-
tween the utility company and end-users is introduced
in [86]. A distributed algorithm which converges to the
unique equilibrium with only local information is de-
vised.

4.7 Power system security
Connected by the ultra-high voltage transmission net-

work, the statewide power grid in China is made up of
tens of thousands of buses and lines, as well as thou-
sands of generators. With the deepened reforming of
energy industry policy and proliferation of power elec-
tronics based convertors, both static operation and dy-
namic control of such a complicated power system are
becoming more and more challenging. Moreover, exist-
ing stability and reliability evaluation methods are ori-
entated towards given failure. They are not eligible for
assessing the consequence of malicious attacks, not to
mention cascading failure prevention and interdiction.

Engineering game theory enables a multi-stage de-
scription of the interaction between the attacker and
system defender [8], creating a new branch of engi-
neering games: network security game, a zero-sum dy-
namic game with two or three stages. The former en-
compasses the attacker-defender model and defender-
attacker model [87–91], depending on the sequence of
actions; The latter allows both preventive and correc-
tion actions deployed by the defender, and gives rise to
a defender-attacker-defender model [92–95]. The equi-
libria of network security games suggest the most vul-
nerable components in the system, as well as the best
defensive strategy when the network is under attack.

In short, engineering game theory opens a new way to
protect complex networked system against deliberated
attack, and enhance system vulnerability and resilience.

4.8 Power system evolution
As an important research direction in power system

engineering, the study of power grid evolution not only
helps gain deeper insights on the history of grid devel-
opment, but also offers useful suggestions on power
planning and topology design. Existing power system
planning gives optimal expansion strategies based on
certain optimization models. The lack of dynamic and
variational perspectives makes it less competitive in re-
vealing the evolutionary mechanism of power systems.
The three-generation power grid theory in [96] explains
the evolution of power system from a biological point of
view. In this context, evolutionary game theory inspired
research on power system evolution include two basic
problems

1) General principles on power grid’s evolution, in-
cluding driving factor identification, evolving model and
analytical method, based on complex network theory
[97].

2) The power grid evolutionary game model, whose
evolutionary stable strategy balances safety, cost, and
environmental impact.

Research in this direction provides a holistic view
on the power grid evolution history, and helps related
authority make scientific and reasonable decisions on
power network planning and grid operation.

5 Conclusions
We have explained basic motivations of engineering

game theory, summarized its scientific orientations, and
provided a comprehensive overview on its applications
in power system pertinent problems. We hope that
through developing engineering game theory, we can
build a bridge between theorists and engineers, such
that game theory should show its promising potential
to provide analytical foundations and decision support
tools for practical problems in a variety of engineering
subjects in energy industry, wireless power transfer and
communication technology, information science, etc.,
in spite of possible challenges and difficulties, rather
than sinking into pure logical and mathematical studies.
Nevertheless, engineering game theory is still in its in-
fancy stage. More work should be done to improve its
theoretical soundness and practical relevance.
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