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Abstract
An active disturbance rejection controller (ADRC) is developed for load frequency control (LFC) and voltage regulation

respectively in a power system. For LFC, the ADRC is constructed on a three-area interconnected power system. The control
goal is to maintain the frequency at nominal value (60Hz in North America) and keep tie-line power flow at scheduled value.
For voltage regulation, the ADRC is applied to a static var compensator (SVC) as a supplementary controller. It is utilized to
maintain the voltages at nearby buses within the ANSI C84.1 limits (or ±5% tolerance). Particularly, an alternative ADRC with
smaller controller gains than classic ADRC is originally designed on the SVC system. From power generation and transmission to
its distribution, both voltage and frequency regulating systems are subject to large and small disturbances caused by sudden load
changes, transmission faults, and equipment loss/malfunction etc. The simulation results and theoretical analyses demonstrate
the effectiveness of the ADRCs in compensating the disturbances and achieving the control goals.
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1 Introduction
A power system consists of generation, transmission,

distribution, and load. The majority of power systems
use three-phase AC power which meets the strong
needs for economic transmission to great distances.
In an AC power system, the power absorbed or de-
livered by the resistive components of a RLC load is

called active (or real) power with a unit of watt (W),
while the power absorbed or delivered by the reactive
parts of the load (such as capacitors and inductors) is
named as reactive power whose unit is defined as volt
amperes reactive, or var [1]. The active and reactive
powers in a transmission network are independent of
each other, and controlled separately [2]. The changes
of active power influence system frequency. As gener-
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ation chases load variations, frequency deviates from
scheduled values. Therefore, active power is related to
load frequency control(LFC). The variations of reactive
power affect bus voltage. Therefore reactive power is as-
sociated with voltage control [2]. As stated in [1], “sus-
tained operation of power systems is impossible unless
generator frequencies and bus voltages are kept within
strict limits”. In addition, “a reliable power system must
remain intact and be capable of withstanding a wide
variety of disturbances” such as sudden load changes,
transmission system faults, equipment loss/malfunction
and so on [1]. LFC and voltage control are utilized to
keep the constancy of frequency and voltage despite
the presence of disturbances, so as to ensure the sus-
tained operations and stability of power systems. The
dynamic performance of a power system is dependent
on the effectiveness and robustness of LFC and voltage
control [3], both of which maintain a balance between
load and generation. Once the balance is broken, power
system blackouts are likely to occur [1]. The famous
North American blackout of 2003 was linked to the
short-term (10–50 h) system instability triggered by dis-
turbances [4]. Therefore a robust control system against
disturbances is essential for a reliable power system.

Modern power systems consist of multiple control ar-
eas which are connected with each other via tie lines. In
each control area, any sudden load perturbation could
cause the normal operating point of a power system to
vary from its prescribed values. As a result, the devi-
ation occurs about the operating point such as nomi-
nal system frequency and scheduled power exchange
to the other areas [5]. The LFC is thus used to stabi-
lize the system frequency at around 60 Hz (the standard
frequency in North America), and keep tie-line power
flows at scheduled values [6]. The linear combination
of frequency deviation (Δ f ) and net power interchange
error (ΔPtie) is defined as area control error (ACE). The
major objective of LFC is regulating the ACE. As the ACE
is driven to zero by LFC, bothΔ f andΔPtie will be driven
to zero as well [2]. In the literature, the LFC has been
investigated for almost five decades [6–8]. The PI/PID
based LFC is the most established solution in power in-
dustry [5,9–16]. Although the PI/PID controllers are easy
to implement, they are not effective to provide satisfac-
tory dynamic performance in the presence of various
load changes [17]. Long settling time and large over-
shoot are the primary hindrances of PI/PID controllers.
Nowadays the power systems are undergoing unprece-
dented changes with the incorporation of large number

of renewable energy sources, distributed generation and
demand response. These changes introduce significant
uncertainties and disturbances to the power system con-
trol. Traditional PI/PID controllers are not robust against
such uncertain systems with large disturbances. Conse-
quently many advanced control methods have been pro-
posed for LFC [6–8]. Such advanced controllers include
optimal control approaches (particle swarm optimiza-
tion algorithms, tabu search algorithms and bacterial
foraging optimization algorithm etc.), adaptive and self-
tuning methods, robust approaches such as H∞ control,
LQG, and μ analysis, and intelligent approaches consist-
ing of artificial networks, fuzzy logic, genetic algorithms
and so on [6–8]. Among these advanced controllers,
an emerging robust control technology entitled active
disturbance rejection control (ADRC) is initially applied
to three-area power systems by Dong et al. [18, 19],
and is demonstrated to be an effective LFC. In [18, 19],
non-reheat, reheat, and hydraulic turbines are located in
the three different areas respectively. The ACE, Δ f , and
ΔPtie are successfully driven to zero despite the pres-
ence of various types of disturbances (i.e., large step
load change, random load change, and loss of equip-
ment) [19]. The ADRC mainly relies on the reference
input, output, and the order of a system. In its frame-
work, the difference between the mathematical and ac-
tual system models is defined as a generalized distur-
bance (GD). The GD is estimated by an extended state
observer (ESO) and then compensated by a feedback
controller in real time. Because the ADRC is indepen-
dent of an accurate mathematical model, it is very robust
against system uncertainties and external disturbances.
Therefore the ADRC is a natural fit for modern complex
power systems. Following [18, 19], more ADRC-based
LFCs are presented in literature [20–25]. The nonlin-
ear part associated with a turbine named as generation
rate constraint (GRC) is investigated in [20], where an
anti-GRC scheme is added to the ADRC. In [21, 22],
two different algorithms that are used to optimize the
controller parameters of ADRC are discussed. They are
diminishing step fruit fly optimization algorithm (DS-
FOA) [21] and gravitational search algorithm (GSA) [22].
A reduced-order ADRC is applied to the power system
in [23], where one non-dominant pole is disregarded
for the transfer function model of each area. The same
ADRC as in [18,19] are employed to regulate frequency
deviations for two-area and four-area power systems
respectively in [24, 25]. It is verified in [18–25] that
the ADRC is not only robust against disturbances and
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model uncertainties, but can compensate nonlinearities
for multiple-area power systems. In addition, compared
to the other advanced controllers [6–8] with numerous
tuning parameters, the ADRC with linear ESO only has
two (one for controller and the other for ESO). This ad-
vantage makes it simple to implement in practice.

Besides frequency control, voltage control is vital to
the satisfactory performance of a power system. It is
more efficient to transmit power at high voltages for a
long distance than at low voltages [2]. The generator
voltages are usually in the range of 11 to 35 kV. The
voltages (from generators) are stepped up to the trans-
mission voltage level (typically 230 kV and above), and
then stepped down to the sub-transmission level [2]. The
distribution systems represent the final stage in power
transfer to the end users (industrial, commercial, and
residential customers), who are supplied with the uti-
lization voltage such as 120 V (single phase) in North
America. The objective of voltage control is maintaining
the voltages at different buses within ANSI (American
National Standards Institute) C84.1 limits (or ±5% tol-
erance). The control of voltage levels is accomplished
by adjusting the production, absorption, and flow of
reactive power at all buses in the power system. The
generating units provide the basic means of voltage con-
trol through automatic voltage regulators [1, 2]. Never-
theless, additional means are required to control volt-
ages throughout the transmission and distribution sys-
tems [2]. Among the devices that could serve this pur-
pose, the static var compensator (SVC) is the dominate
one that has been extensively used in power industry for
decades due to its low cost and efficiency. The SVC is
a device in the family of the flexible alternating current
transmission system (FACTS) [26]. It senses the voltage
from the transmission grid and maintains the voltage
at a nominal level by supplying or absorbing reactive
power to and from the grid. However, the irregular dis-
turbances in a power system make it very difficult for the
SVC to achieve ideal voltage regulations. The robustness
of the SVC is inadequate to withstand large, sudden, or
rapidly changing load disturbances. The ability of SVCs
is limited by delays in reactive power measurement [27].
Consequently, the var output of a SVC sometimes drops
during voltage sag, and increases during voltage swell
[28], causing the instability of power systems. In ad-
dition, a poorly tuned SVC could give rise to voltage
oscillations in the power system with varying distur-
bances [28]. Therefore, a supplementary controller shall
work together with the SVC to enhance its robustness

and stability. Different control techniques have been de-
veloped for SVC systems. In addition to conventional
PID controllers [29–31], the advanced control meth-
ods have been applied to SVCs such as adaptive back-
stepping sliding mode H∞ control [32], adaptive fuzzy
logic control [33], dual-function neuron-based external
controller [34], adaptive sliding mode control [35], and
others [36]. The PID controllers [29–31] have aforemen-
tioned problems (as we discussed in load frequency con-
trol). The advanced controllers in [32–36] are complex in
structure and difficult to implement. An ADRC is merely
a combination of ESO and a feedback controller. The
simple structure and robustness make it convenient and
easy to use in the SVC. An ADRC with nonlinear ESO
is applied to the SVC in [37, 38]. The ADRCs with both
linear and nonlinear ESOs are constructed on the SVC
in a wind power system with asynchronous generators
in [39]. The nonlinear ESO is as effective as a linear
ESO in estimating GD. However, the former has multi-
ple tuning parameters while the latter only has one. In
this paper, an ADRC with linear ESO is developed for
the power system in North America where synchronous
generators are typically used [1]. Both step disturbances
and random time-varying disturbances are added to the
SVC system to test the robustness of the ADRC. Besides
the classic ADRC, an alternative ADRC is originally de-
veloped for the SVC. For the design of alternative ADRC,
the known part of the SVC model is utilized in control
law. The ESO is only used to estimate the unknown part
of the system and external disturbances. With available
model information, the alternative ADRC shows better
transient performance than classic one in later simula-
tion studies. The former also requires smaller controller
gains than the latter. The focus of this paper is on the de-
velopment of an ADRC for the two major control loops
of power systems: LFC and voltage control separately in
the presence of various disturbances.

The rest of this paper is organized as follows. The
ADRC for an nth-order system with m number of inputs
is developed in Section 2. The application of ADRC to
LFC is discussed in Section 3. The alternative ADRC for
voltage control is developed in Section 4. Concluding
remarks and future research are given in Section 5.

2 Classic ADRC design
The ADRC is originally designed by Han in a nonlinear

form [40,41], and later linearized by Gao [42–44] for the
easiness of implementation and vast applicability. The



L. Dong et al. / Control Theory Tech, Vol. 16, No. 4, pp. 336–350, November 2018 339

linear ADRC (with linear ESO) achieved enormous suc-
cess in motion control [45], Micro-Electro-Mechanical
Systems [46, 47], web tension [48], automobile sys-
tems [49, 50], power systems [18–25], and many other
areas. In this section, the classic linear ADRC is derived
for an nth order system with m number of inputs and
external disturbances [18–20]. The general form of an
nth order system is given by

Y(s) = G(s)U(s) +D(s), (1)

where Y(s),U(s) and D(s) are the Laplace transforms of
output, input, and external disturbance of the system,
and G(s) is the plant transfer function (TF):

G(s) =
bmsm + . . . + b1s + b0

ansn + an−1sn−1 + . . . + a1s + a0
. (2)

In (2), ai (i = 0, . . . , n) and bi (i = 0, . . . ,m) are the
constant coefficients for G(s). The differential equation
model for (1) is given by

any(n)(t) + an−1yn−1(t) + . . . + a1 ẏ(t) + a0y(t)
= bmu(m)(t) + bm−1u(m−1)(t) + . . . + b1u̇(t) + b0u(t)
+ and(n)(t) + an−1dn−1(t) + . . . + a1ḋ(t) + a0d(t), (3)

where u(t), y(t) and d(t) are the input, output and dis-
turbance for the system. Integrating m times both sides
of (3) yields

y(r)(t) = bu(t) + f (y(t),u(t), d(t)), (4)

where b = bm/an, r = n − m, and f (y(t),u(t), d(t)) (or
f ) is the GD which includes all the terms except for
bu(t) and y(r)(t). We choose state variables as x1 = y,
x2 = ẏ, . . . , xr = y(r−1), and xr+1 = f . Suppose f is dif-
ferentiable within the interests, and h = ˙f . Then the
state-space model of (4) is represented by

⎧
⎪⎪⎨
⎪⎪⎩

Ẋ = AX + Bu + Eh,

y = CX,
(5)

where X = [x1, x2, . . . , xr+1]T,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...
...
...

...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(r+1)×(r+1)

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

b

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(r+1)×1

,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(r+1)×1

, C = [1 0 0 · · · 0]
1×(r+1)

.

For a classic ADRC, an ESO is used to estimate both sys-
tem states and the GD (or f ). The ESO is represented
by

⎧
⎪⎪⎨
⎪⎪⎩

Ż = AZ + Bu + L(y − ŷ),

ŷ = CZ,
(6)

where the observer state vector Z = [z1, z2, . . . , zr, zr+1]T

with z1≈ y, z2 ≈ ẏ, . . . , zr ≈ y(r−1), and zr+1 ≈ f , and
observer gain vector L = [β1, β2, . . . , βr, βr+1]T. The ob-
server gains β1, . . . , βr+1 are selected in such a way that
the characteristic equation of the ESO will be (s+ωo)r+1

where ωo is a positive observer bandwidth. From [44],
we have

βi =
(r + 1)!

i!(r + 1 − i)!
ωi

o, i = 1, . . . , r + 1. (7)

The observer state zr+1 is used to approximate f , the
GD. We choose the control law as

u =
−zr+1 + u0

b
, (8)

where u0 is to be determined. Suppose zr+1 is an accu-
rate estimate of f . Substituting (8) into (4) yields

y(r)(t) = u0. (9)

Our control goal is driving y to a constant reference sig-
nal r. Then the simplified system (9) can be controlled
by a state feedback controller (u0) with controller gains
k1, k2, . . . , kr:

u0 = k1(r − y) − k2 ẏ − . . . − kry(r−1). (10)

Let the states y, ẏ, . . . , y(r−1) in (10) be replaced by their
estimates z1, z2, . . . , zr. Substituting (10) into (8), we ob-
tain the control law as

u = −k1z1 + . . . + krzr + zr+1 − k1r
b

= −K
b

Z +
k1

b
r, (11)

where K = [k1, k2, . . . , kr, 1] is controller gain vector. The
controller gains are chosen in such a way that the char-
acteristic equation of the feedback controller is (s+ωc)r,
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where ωc is a positive controller bandwidth. According
to [44], we have

ki =
r!

(i − 1)!(r + 1 − i)!
wr+1−i

c , i = 1, . . . , r. (12)

From the equation development above, we can see that
there are only two tuning parameters for the ADRC.
They are controller and observer bandwidth ωc and ωo

respectively. Therefore, the ADRC is simple to imple-
ment, and easy to tune. In addition, the unknown sys-
tem dynamics and external disturbances are included
in the GD, and actively compensated by the feedback
controller. Therefore, the ADRC is robust against system
uncertainties and disturbances.

3 Application of ADRC to LFC
In an interconnected power system, LFC is used to sta-

bilize frequency oscillations despite the presence of load
disturbances. In the modern world, the power industry
is in a transition from vertically integrated monopolistic
power utility to a structure under deregulation where
competitive markets exist [7]. The transition not only
increases the complexity of power system, but intro-
duces uncertainties to system modeling. Furthermore,
various types of apparatuses with large capacity and
fast power consumption increase power load changes
(or disturbances) significantly [8]. These substantial dis-
turbances and model uncertainties make it difficult to
achieve ideal frequency control. Therefore, a LFC that is
reliable (i.e., performing intended functions in normal
conditions), robust (i.e., working under perturbations
and system variations), and economic is highly in de-
mand. As presented in Section 2, ADRC is robust against
both system uncertainties and external disturbances. It
is cost-effective due to its simple structure and easiness
of tuning. Therefore, the ADRC meets the demands of
LFC, and is an ideal solution to frequency stabilization
problem. In this section, the ADRC is developed and
tested on a three-area interconnected power system.

3.1 Dynamic model of three-area power system
The power system is illustrated in Fig. 1, where three

areas are connected with each other through tie lines.
Each area has n generating units that are owned by
different generation companies (or Genco i j, where
i = 1, 2, 3; j = 1, . . . , n). In Fig. 1, ΔPL1, ΔPL2, and ΔPL3

represent active power load changes. Every generating
unit consists of a turbine, a generator, and a governor.
The governor is a device to sense the frequency bias
caused by the load change. The input and output of the

governor are electrical power change ΔPe and valve po-
sition change. In order to ensure satisfactory and stable
parallel operation of multiple units, the speed governor
is provided with droop characteristic (denoted by R).
Turbine is used to transform the natural energy, such
as from steam (for non-reheat and reheat turbines), into
mechanical power (ΔPm) that is supplied to the genera-
tor.

Fig. 1 Schematic diagram of three-area power system.

Here we use non-reheat turbine as an example to
construct the ADRC-based LFC. Define GET(s) as the
transfer function from ΔPe(s) to ΔPm(s). The GET(s) for
non-reheat turbine is

GET(s) =
NumET(s)
DenET(s)

=
1

(Tgs + 1)(Tchs + 1)
. (13)

The generator converts the mechanical power from tur-
bine to electrical power. A change in active power de-
mand is reflected throughout the system by a change
in frequency (Δ f ). As generation chases load variations,
frequency and tie-line power flow deviate from their
scheduled values. Define M as area inertial constant,
and DL area load damping constant. The TF of the gen-
erator is

GGen(s) =
1

DenM(s)
=

1
MS +DL

. (14)

The goal of LFC (ADRC) is to regulate the frequency
deviation (Δ f ) and tie-line power error (ΔPtie) in the
presence of varying active power loads. Specifically it is
utilized to control ACE to zero. The measurable ACE is
defined as

ACE = ΔPtie + BΔ f , (15)

where B is area frequency bias setting [2]. Fig. 2 shows
the block diagram of a generating unit with a non-reheat
turbine.
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Fig. 2 The block diagram of a generating unit with non-reheat turbine.

From Fig. 2, the ACE output (or Y) is given by

Y(s) = GP(s)U(s) + GD(s)ΔPL(s) + Gtie(s)ΔPtie(s), (16)

where

GP(s) =
RBNumET(s)

NumET(s) + RDenET(s)DenM(s)
, (17)

GD(s) =
−RBDenET(s)

NumET(s) + RDenET(s)DenM(s)
, (18)

Gtie(s) =
NumET(s)+RDenET(s)DenM(s)−RBDenET(s)

NumET(s) + RDenET(s)DenM(s)
.

(19)

Define

GD(s)ΔPL(s) + Gtie(s)ΔPtie(s) = D(s). (20)

Then (16) can be rewritten as Y(s) = GP(s)U(s)+D(s),
which matches the general form (1). Therefore, each
generating unit can be controlled by the ADRC devel-
oped in Section 2. From (13)–(16), the relative system
order for each generating unit is three. Therefore, a
fourth-order ESO can be utilized to estimate the sys-
tem states and GD for the generating unit.

3.2 Simulation results
The performance of the ADRC is compared to that of

the PI controller which is tuned by genetic algorithm lin-
ear matrix inequalities (GALMI) [5]. In order to conduct
the comparison study, we build the ADRC and GALMI-
based PI controllers on the same three-area power sys-
tem model as in [5] where three Gencos are distributed
in each area with non-reheat turbines. The two control
systems are simulated in Matlab/Simulink [19]. The con-
troller and observer bandwidths of the ADRC for three

areas are ωc = 4 rad/s, and ωo = 20 rad/s. The PI con-
troller gains are given in [5]. The parameter values of
the power system can be found in [2, 51]. In order to
test the robustness of both controllers against large dis-
turbances, a step load change with large magnitude is
added to each area at t=2 seconds. The magnitudes of
the load changes are ΔPL1 = 100 MW, ΔPL2 = 80 MW,
and ΔPL3 = 50 MW, respectively. The ACEs, frequency
errors, and control efforts (ΔPc) are illustrated in Figs. 3–
5.

These figures show that the ADRC produces smaller
overshoot and shorter settling time than PI controller in
ACE and frequency errors. However, the control efforts
of the ADRC have small spikes at the beginning of simu-
lation. The spike could be caused by the slight lag of ESO
in response to external disturbance. Nevertheless, the
peak value of the control effort of the ADRC is no more
than 0.2 p.u., which is reasonable in practice [2, 19].
The ADRC shows superior transient performance to PI
controller.

Fig. 3 System responses and control efforts in area 1 (reprinted
from [19] with permission from Elsevier).
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Fig. 4 System responses and control efforts in area 2 (reprinted
from [19] with permission from Elsevier).

Fig. 5 System responses and control efforts in area 3 (reprinted
from [19] with permission from Elsevier).

4 Application of ADRC to SVC
SVCs are shunt-connected static generators and/or

absorbers of reactive power [3]. Their outputs are varied
so as to control the voltage of the electric power system.
The control goal is to maintain the voltages at nearby
buses within ANSI C84.1 limits (or ±5% tolerance). The
problems of maintaining voltages within the required
limits are complicated by the fact that the power sys-
tem is subject to different kinds of disturbances that

could cause voltage sags or swells. Both step and ran-
dom disturbances are common in power systems. Here
the ADRC is utilized to effectively compensate the dis-
turbances, and keep constant voltages for the reliable
operation of power systems.

4.1 Dynamic model of SVC
The single-line diagram of a SVC is shown in Fig. 6.

The SVC system mainly consists of a voltage measur-
ing device, voltage regulator, thyristor susceptance con-
troller, and transmission network. The voltage measur-
ing device is used to measure the positive-sequence
voltage from the network. The measured voltage Vm is
compared with the reference signal Vref, which is the
desired or nominal bus-line voltage (usually considered
as 1 p.u.). The voltage error between Vref and Vm is
regulated by a voltage regulator, which outputs suscep-
tance B. Distribution unit, synchronization unit, thyristor
switched capacitor (TSC) and thyristor controlled reac-
tor (TCR) constitute the thyristor susceptance control.
Using the susceptance B, the distribution unit computes
the firing angle which determines switching on/off of the
TSC and/or TCR [26]. The synchronization unit keeps
the firing of the thyristors in synchronism with the fre-
quency of the AC voltage so that the firing angle α does
not drift. The synchronous timing is provided by a phase
locked loop (PLL) [26]. Depending on whether the bus-
line voltage is above or below the terminal voltage level,
the SVC will either absorb or generate reactive power
through controlling TSC and TCR.

The simplified diagram model of the SVC is shown
in Fig. 7 where e represents the difference between Vref

and the measured voltage (from voltage measuring de-
vice, of which H(s) is the TF), Vs is an external distur-
bance voltage, and GR(s) is the TF of voltage regulator.
The thyristor susceptance control is modeled by GB(s). It
generates pulses to turn on or off the TCR and TSC based
on the firing angle of the thyristors to control vars. The
output of susceptance control BSVC is multiplied by the
voltage (VT) from the transmission line to yield current
(ISVC), which is then sent to the network GN(s).

Isvc

Fig. 6 Single-line diagram of SVC [26].
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The TF of the voltage measuring device is

H(s) =
1

1 + Tms
, (21)

where Tm is the time constant of voltage measuring de-
vice. The TF of the voltage regulator is given by

GR(s) =
KSL

1 + Ts
, (22)

where T is the time constant of regulator, and KSL is
the reciprocal of the droop characteristic. According
to [2, 52], the TF model of the thyristor susceptance
control is given by

GB(s) =
e−sTd

1 + TBs
(23)

where Td is the gating transport delay, and TB is the time
constant of thyristor firing sequence control. From [2],
the parameter Td has such a small value that it is nor-
mally neglected, making e−Tds = 1. Therefore, (23) is
rewritten as

GB(s) =
1

1 + TBs
. (24)

The network, GN(s), can be represented by a constant.
Combining (21), (22), and (24), we have a third-order
loop gain TF as follows for the SVC system:

G′P(s) =
b′0

(1 + TBs)(1 + Ts)(1 + Tms)
, (25)

where b′0 is a constant. According to (2)–(6), a fourth-
order ESO is needed to estimate the states and GD for
the third-order system given by (25). The classic ADRC
based on (5)-(12) can be developed for the SVC.

Fig. 7 Simplified transfer function model of SVC.

4.2 Alternative ADRC design
In the SVC system, the parameter (TB) of thyristor sus-

ceptance control could vary significantly with the rapid

changes of inductive load while the other two param-
eters T and Tm are almost unaltered [52]. Therefore,
we can divide the TF in (25) into two parts: the known
and unknown. Suppose −A0, −A1, and −A2 are negative
open-loop poles. Then (25) is rewritten as

G′P(s) =
Y1(s)
U1(s)

=
1

(s + A2)(s + A1)
︸��������������︷︷��������������︸

known

b′

(s + A0)
︸���︷︷���︸

unknown

, (26)

where Y1(s) is the measured voltage, and U1(s) is the
input of SVC including both disturbance (d′) and con-
trol effort (u′1). For alternative ADRC design, an ESO is
employed to estimate the unknown dynamics only. The
available information of the plant is utilized in the con-
troller design. The differential equation model of (26)
is

...
y 1 = − (A0 + A1 + A2)ÿ1 − (A0A1 + A1A2

+ A0A2)ẏ1 − (A0A1A2)y1 + b′u′1 + b′d′. (27)

Let f̂ (·) include all the unknown terms in (27):

f̂ (·) = −A0 ÿ1 − A0(A1 + A2)ẏ1 − A0A1A2y1 + b′d′.
(28)

Equation (27) can be rewritten as

...
y 1 = −(A1 + A2)ÿ1 − (A1A2)ẏ1 + f̂ (ÿ1, ẏ1, y1, d′) + b′u′1.

(29)

The state variables for (29) are chosen as: x̂1 = y1,

x̂2 = ẏ1, x̂3 = ÿ1 and x̂4 = f̂ . Define ĥ = ˙̂f , and ĥ is
bounded. The state equations are

⎧
⎪⎪⎨
⎪⎪⎩

˙̂X = ÂX̂ + B̂u′1 + Êĥ,

ŷ1 = ĈX̂,
(30)

where

Â=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 −A1A2 −A1−A2 1

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̂=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

b̂

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ê=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ĉ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(31)

The four system states can be estimated using the
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ESO:
⎧
⎪⎪⎨
⎪⎪⎩

˙̂Z = ÂẐ + B̂u′1 + L̂(y1 − ŷ1),

ŷ1 = ĈẐ.
(32)

In (32), Ẑ = [ ẑ1, ẑ2 , ẑ3, ẑ4 ]T, where ẑ1, ẑ2, ẑ3, and ẑ4

are the estimates of x̂1, x̂2, x̂3, and x̂4 respectively. The
observer gain vector L̂ is chosen in such a way that the
characteristic equation of the ESO will be (s +ω0)4. The
elements of L̂ are
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̂1 = 4ω0 − (A1 + A2),

L̂2 = 6ω2
0 − 4(A1 + A2)ω0 + (A1 + A2)2 − A1A2,

L̂3 = 4ω3
0 − 6ω2

0(A1 + A2) + 4ω0(A2
1 + A2

2 + A1A2)

−(A1 + A2)3 + 2A1A2(A1 + A2),

L̂4 = ω4
0,

(33)

The reference signal (r1) for nominal voltage should
be 1 p.u. The control law is then designed as

u′1 =
1
b′

[K̂1(r1 − ẑ1) − K̂2ẑ2 − K̂3ẑ3 − ẑ4], (34)

where the controller gains are given as follows:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K̂1 = ω3
c ,

K̂2 = 3ω2
c − A1A2,

K̂3 = 3ωc − (A1 + A2).

(35)

From (12), the controller gains of classic ADRC for a
third-order system are ω3

c , 3ω2
c , and 3ωc. Since both A1

and A2 are positive for the SVC system, (35) shows that
the controller gains of alternative ADRC are smaller than
the ones for classic ADRC. Smaller controller gains are

easier to implement in practice. Therefore, this is one
advantage of alternative ADRC over the classic one.

4.3 Stability and robustness analyses
The performance of a power system could be de-

graded by various types of disturbances. In addition,
model uncertainty broadly exists in the SVC system.
In this section, we study the robustness of the ADRC
against disturbances and system uncertainties. The
block diagram of a closed-loop SVC control system is
shown in Fig. 8, where H(s) is a prefilter, C̄(s) repre-
sents the controller (classic or alternative ADRC). The
details of TF development for constructing Fig. 8 can be
found in [19, 44, 46]. The nominal values of system pa-
rameters for SVC are provided in [2,52]. In the following
frequency-domain analyses, the parameters of KSL, TB,
and Tm are changed between −15% and +20% of their
nominal values.

Fig. 8 Closed-loop control system.

The Bode diagrams of the loop gain transfer function
(from Fig. 8) are illustrated in Figs. 9 and 10. For clas-
sic ADRC, the gain margins are ranging from 13.2 dB to
19.1 dB, and the phase margins are ranging from 92.5◦ to
94.6◦. For alternative ADRC, the gain margins are rang-
ing from 14 dB to 15.7 dB, and the phase margins are
ranging from 98.4◦ to 100◦. The positive stability mar-
gins indicate the stabilities of the closed-loop system
with both ADRCs despite the presence of parameter
variations.

Fig. 9 Bode diagrams of loop gain transfer function with varying parameters for classic ADRC controlled SVC system.
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Fig. 10 Bode diagrams of loop gain transfer function with varying parameters for alternative ADRC controlled SVC system.

The Bode diagrams of the TF between input distur-
bance D′(s) and output Y1(s) are shown in Figs. 11 and
12. The figures demonstrate excellent disturbance rejec-
tion properties of both classic and alternative ADRC that
are unaffected by the variations of the system parame-

ters. The Bode diagrams in this section not only demon-
strate the stability of two ADRC controlled SVC systems,
but also show the robustness of both controllers against
disturbances and system uncertainties.

Fig. 11 Bode diagrams of disturbance transfer function for classic ADRC in the presence of parameter variations.

Fig. 12 Bode diagrams of disturbance transfer function for alternative ADRC in the presence of parameter variations.
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4.4 Simulation results
In this section, we simulate ADRC controlled SVC sys-

tem in Simscape Power Systems (of Matlab/Simulink).
Unlike the Simulink model that is based on the mathe-
matical model of a physical plant, Simscape Power Sys-
tems contain real models of electrical power compo-
nents, including three-phase machines, electric drivers,
and components for such applications as FACTS. It helps
us develop and test system-level performance, and pro-
vides a way to construct realistic power system model.
The Simscape Power System model for a SVC control
system is shown in Fig. 13. The model consists of a
network with a 500 kV voltage source, three-phase se-
ries RLC branch which represents the system impedance
and load. The network is rated at 3000 MVA with an X/R
ratio (or system reactance/resistance ratio) of 10 and
the load is 10 MW. The SVC model is connected to the
three-phase network. The internal structure of the volt-
age regulator in the SVC block is illustrated in Fig. 14,
where the output of voltage measuring device (V1meas),
and the reference signal (Vref) constitute the input of
ADRC. We use per unit system in simulation results. For

a per unit system, if the actual voltage is controlled to be
same as the base/nominal voltage, the per-unit voltage
will be 1.0 p.u.

As shown in Fig. 14, different kinds of disturbances are
added to the transmission network respectively. Here
we apply both large and small disturbances to the SVC
system. Large voltage disturbances are usually repre-
sented by step disturbances, which include positive and
negative step disturbances. A positive step disturbance
stands for loss of load, while a negative step distur-
bance represents loss of transmission line, transformer,
or generator. Small voltage disturbances are caused by
sudden incremental change in the load [2]. Operating
a steel mill’s arc furnace, starting a large induction mo-
tor, and energizing a transformer are the examples of
small voltage disturbances. A small disturbance can be
represented by the random disturbance with randomly
varying magnitude and frequency. Small voltage distur-
bances create power quality problems such as voltage
flicker; whereas large voltage disturbance can cause
voltage collapse which results in stability issues and
blackouts. The robustness of the ADRCs against these
disturbances is tested in simulation.

Fig. 13 SVC control system in Simscape power systems.

Fig. 14 Internal structure of the voltage regulator in Simscape power systems.
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Our control goal is to maintain the steady state volt-
age within 5% of nominal voltage (i.e., 0.95–1.05 p.u.) at
nearby substation buses and at the end-user customers,
who utilize 120 V RMS in North America. Classic and
alternative ADRCs are applied to the SVC separately.
The controller and observer bandwidth (ωc and ω0) are
tuned for the two controllers respectively so that the out-
put voltage is driven to 1 p.u. (±5% tolerance). In order
to fairly compare the performances between both con-
trollers, we choose the same ωc and ω0 for both ADRCs
to achieve as fast settling time as possible. In the simu-
lations, a negative step disturbance with a magnitude of
0.3 p.u. (300 MW) and positive step disturbance with a
magnitude of 0.03 p.u. (30 MW) are added to the system
at t = 10 s. Fig. 15 shows the step responses of SVC sys-
tems with both classic and alternative ADRCs in the pres-
ence of negative step disturbance. Fig. 16 demonstrates
the control signals of two controllers with negative step
disturbances. Fig. 17 illustrates the step responses of the
SVC system with both ADRCs in the presence of positive
step disturbance. Fig. 18 presents two control signals
with positive step disturbance. Fig. 19 shows the ran-
dom disturbance that is added to the SVC system during
the whole simulation period. Fig. 20 demonstrates the
voltage responses of the SVC systems to the random
disturbance under the control of two ADRCs. Fig. 21
presents both control signals with random disturbances.

From the simulation resulsts, we can see that both
classic and alternative ADRCs successfully drive the sys-
tem voltage to the nominal value (±5% tolerance) de-
spite the presence of different kinds of disturbances.
Fig. 16, Fig. 18, and Fig. 21 exhibit that the amplitudes of
the control signals of classic ADRC are equivalent to the
ones of alternative ADRC. With the equivalent control
efforts, the alternative ADRC produces much shorter set-
tling time in system response than classic one after the
step disturbance is introduced to the system (see Fig. 15
and Fig. 17). If the ωc and ω0 for classic ADRC were in-
creased, the settling time would be reduced. However,
the control effort of classic ADRC would become bigger.
A large control effort (usually associated with large cost)
is not a good option for real-world applications where
minimizing the power consumption is critical. Although
there are overshoots in Fig. 15 and Fig. 17 at t = 10 s,
the overshoots are within the limit of 0.05 p.u., and thus
are acceptable. In addition, the voltage response to al-
ternative ADRC has smaller oscillations than the one to
classic ADRC in the presence of a random disturbance.

Fig. 15 System responses of SVC with negative step distur-
bances.

Fig. 16 Control signals with negative step disturbance.

Fig. 17 System responses of SVC with positive step distur-
bance.

Fig. 18 Control efforts with positive step disturbance.

Fig. 19 Random disturbance.
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Fig. 20 System responses of SVC with random disturbance.

Fig. 21 Control signals with random disturbance.

5 Conclusions
The constancy of frequency and voltage is a critical

factor in determining the quality of power supply and
utilization [2]. However, due to the large and small dis-
turbances caused by sudden load changes, transmission
system faults, equipment loss and malfunction and so
on, the voltage and frequency deviate from their nomi-
nal values from time to time. The deviations degrade the
performance of power system, and could dangerously
lead to blackouts. With its strong robustness against
disturbances, the ADRC is a natural fit for the uncertain
power system which is constantly subject to step and
random disturbances. Particularly, the ADRC only has
two tuning parameters which are simple to determine.

One contribution of the paper is successful applica-
tion of the classic ADRC to two crucial control loops in
power systems: voltage regulation (through SVC) and
LFC. Although the classic ADRC has been applied to
the LFC and SVC individually in literature, it has not
been employed to both LFC and SVC before. The clas-
sic ADRC effectively drives the ACE to zero. It exhibits
superior transient performance to PI controller in LFC.
Classic ADRC is a feasible controller for SVC as well.
The other contribution of the paper is original develop-
ment of an alternative ADRC on the SVC. Because the
partial model information of the SVC system is available,
the alternative ADRC makes use of the known part of

the model, and generates reduced controller gains com-
pared to classic ADRC. The reduced controller gains
are an attractive option for practical exercises where
small gains are easy to implement. Simulation results
show that both classic and alternative ADRCs keep the
voltage at all buses within ANSI C84.1 limits for SVC.
Using the same amount of control efforts, alternative
ADRC produces shorter settling time (with step distur-
bances), and smaller oscillations (with random distur-
bances) than classic ADRC in the output of SVC. Fre-
quency domain analyses demonstrate the stability and
robustness of the two ADRCs against disturbances and
system uncertainties.

In the future, we plan to consider the nonlinearities in
system models such as the rate limits on valve position,
generation rate constraint for governor, the occurrence
of switching time bifurcation in a TCR-SVC system, and
non-negligible gating transport delay in thyristor suscep-
tance control. We will employ the ADRC to compensate
such nonlinearities and test the control system in Sim-
scape Power Systems.
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