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Abstract
This paper gives an overview of early development of nonlinear disturbance observer design technique and the disturbance

observer based control (DOBC) design. Some critical points raised in the development of the methods have been reviewed and
discussed which are still relevant for many researchers or practitioners who are interested in this method. The review is followed
by the development of a new type of nonlinear PID controller for a robotic manipulator and its experimental tests. It is shown that,
under a number of assumptions, the DOBC consisting of a predictive control method and a nonlinear disturbance observer could
reduce to a nonlinear PID with special features. Experimental results show that, compared with the predictive control method,
the developed controller significantly improves performance robustness against uncertainty and friction. This paper may trigger
further research and interests in the development of DOBC and related methods, and building up more understanding between
this group of control methods with comparable ones (particularly control methods with integral action).
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1 Introduction

Disturbance observer based control (DOBC) is now
a well known control method and has found a wide
range of applications. The objective of this paper is
twofold: one is to provide a review of the history of
the development of a nonlinear disturbance observer
technique and a nonlinear DOBC design [1] and the
other is to present a piece of the work about the link
between DOBC and nonlinear PID for a robotic manip-

ulator under a number of assumptions. A specific non-
linear disturbance observer technique of concern was
developed in 1998 with papers published in [2] in 1999
and [3] in 2000. Actually before that, disturbance ob-
servers (DOB) have been developed and applied in a
number of areas particularly in motion control [4, 5]. A
few researchers attempts to extend this idea to nonlinear
systems (e.g., notably, [6]). This paper is not attempting
to overview the disturbance observer based control and
related methods. Researchers who are interested in this
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area please refer to several review papers [7,8]. Instead,
this paper is to provide a reflection of personal journey
in the development of DOBC for nonlinear systems.
20 years past since then and the method developed in
1998 are now attracting an even increasing interest from
both academic and industrial community. However, in
the first 10 years, this method was struggling to attract
attention in the community particularly so called main
streams in control theory and was quite difficult to get
papers published. It is greatly appreciated for giving the
author this opportunity to reflect this uneven journey.

On the other hand, there is always a strong interest
in understanding the link between the controller with
integral action and DOBC. The second part of the paper
is devoted to this. Rather than developing a general un-
derstanding and insight of their relationship, a robotic
manipulator is adopted as a case study to reveal their
link. It will be shown that under a number of assump-
tions, the combination of a special nonlinear controller
with a nonlinear disturbance observer may reduce to a
nonlinear PID controller with all the gains being non-
linear functions of the states. The method employed in
this paper is in the same fashion as that used in [2]
where more general discussions between DOBC and
PID have been studied and established. However, this
result must not be over interpreted so concludes with
a general statement that DOBC is equivalent to PID.
In essence, DOBC is a two degrees of freedom control
configuration while PID is a one degree of freedom con-
trol configuration. This work is also related to the very
first work when motivating the research on nonlinear
DOBC [3]. It is quite suitable to present it together with
the note of the history on this occasion.

This paper is organized as follows: Section 2
overviews the origin and the history of the nonlinear dis-
turbance observer techniques. In Section 3, the technical
evolvement of the nonlinear disturbance observer and
its related control strategy was described. Discussions
will be provided on addressing and establishing proper-
ties of these methods. Section 4 is devoted to the link
between DOBC and integral action for the special case
of robotic manipulators. After the introduction of the dy-
namics of a robotic manipulator, a predictive control law
was developed based on tracking performance. Then a
nonlinear disturbance observer is designed to estimate
friction and other unmodelled dynamics/disturbance.
This nonlinear disturbance observer is integrated with
the presented predictive controller together to form a
DOBC scheme in Section 4.3. The stability of the com-

posite controller is established. However the most sig-
nificant and interesting contribution is to establish its
link with nonlinear PID controllers. Then experimen-
tal results for the proposed controller are reported in
Section 5 and the paper is ended with conclusions in
Section 6.

2 Review of the origin of the nonlinear dis-
turbance observer design technique

When employed as an EPSRC (Engineering and
Physics Science Research Council) Postdoctoral Re-
search Associate in the Department of Mechanical En-
gineering at University of Glasgow in 1998, Wen-Hua
Chen was working on the development of nonlinear
model predictive control (MPC) techniques for systems
with fast and strong nonlinear dynamics. Traditionally
MPC was originated from process industry where sys-
tem dynamics are quite slow and in many cases could be
reasonably appropriated by a linear system after being
linearised around operational points. The slow dynam-
ics in process industry allow computers with limited
computing power to solve an online optimisation prob-
lem involved in MPC in real-time. Within the help of
fast development of computing power, we were looking
to develop MPC for mechanical and electrical systems
(e.g., robots and aircraft) where fast dynamics are in-
volved in and in general nonlinearity of the systems to
be controlled have to be taken into account. Hence the
research focused on the development of fast MPC for
systems with strong nonlinearity and fast dynamics. A
novel nonlinear model predictive control scheme was
proposed where no online optimisation is involved in as
analytical solution was developed after several month
hard work [9]. In order to verify the proposed algo-
rithm, it was implemented on a robotic manipulator that
was directly driven by DC motors in the Department of
Mechanical Engineering at the University of Glasgow.
Despite promising performance in simulation, unsatis-
factory tracking performance was observed in experi-
mental tests. After calibrating all the parameters and
examining all the possible causes, friction was identi-
fied as the main source of poor performance. A fric-
tion model was added to the controller to compensate
this influence, and satisfactory performance was initially
achieved. However, inconsistent performance was lately
observed since friction changes with temperature, lubri-
cation and other factors. This motivated Chen to develop
a method that is able to directly estimate friction, rather
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than relying on a friction model whose parameters may
change. Promising performance was demonstrated af-
ter implementing the proposed nonlinear disturbance
observer on the robotic manipulator in the lab [3].

In preparing a paper to present this new design tech-
nique, it was found in the literature search that a simi-
lar concept was proposed by Ohnishi (1982) (e.g., [10]
and [11]). Motivated by the need of estimating unknown
load torque in motor motion control, a transfer function
based approach has been developed by Prof Ohnishi and
his collaborators to estimate unknown load torque and
then extended to a variety of applications. The technique
was coined by Ohnishi as the disturbance observer or
DOB. Although the design method and analysis tools in
the DOB approach are completely different from Chen’s
approach as DOB is based on transfer functions and fre-
quency domain analysis and design techniques are only
applicable to linear systems, the new technique was
named as nonlinear disturbance observer technique and
adopted in the title of the papers in [3].

Although friction can be considered as disturbance
torque/force, it also could be considered as an outcome
due to unmodelled friction dynamics. Encouraged by
the very promising results observed in the experiments
and simulations, Chen attempted to apply the same
idea in estimating the influence of uncertainty, rather
than external disturbance. Dynamic inversion control
was widely regarded as one of the most promising tech-
niques to deal with nonlinear dynamics in the aerospace
control community. Nonlinear control dynamics are in-
troduced to cancel the nonlinear dynamics of a con-
trolled plant (so bear the name of dynamic inversion).
But it also widely recognised that it may lack of robust-
ness when real aircraft or missile dynamics are different
from the dynamics model used to generating the dy-
namic inversion. This was a quite interesting and chal-
lenging topic. Inspired by the success in estimating of
friction in robotic manipulators, the newly developed
nonlinear disturbance observer technique was extended
to estimate the change of missile nonlinear dynamics
due to uncertainties in aerodynamics coefficients [12].
Very promising performance was observed and robust-
ness of the dynamic inversion control was significantly
improved under significant changes of aerodynamic co-
efficients. Furthermore, it also showed that the non-
linear gain in the disturbance observer could provide
a far better robustness than linear gains. In many de-
sign methods, strong robustness is achieved by the use
of high gains or demanding high bandwidths. Careful

study shows that the gains and the bandwidths of the
proposed nonlinear disturbance observer are quite mod-
est. It shall be noted that both the external disturbance
and the influence of the aerodynamic uncertainties were
considered in this paper so this led to the concept of
“lumped disturbances”. It was found out quite lately that
this concept also appears in other techniques, most no-
tably in Adaptive Disturbance Rejection Control (ADRC)
proposed by Prof JQ Han (e.g., see [13] and [14]).

The research in this area was boosted by the award of
the first U.K. EPSRC grant in 2000, entitled “Disturbance
Observer Based Control of Nonlinear Systems with Un-
known Disturbances” to Wen-Hua Chen. The terminol-
ogy Disturbance Observer Based Control or DOBC was
formally proposed in the proposal. The specific schemes
for the estimation of friction in robotic manipulators and
the influence of aerodynamic uncertainties in missiles
were then generalised into a systematic design method
for dealing with generic nonlinear systems and a wide
range of disturbances which now becomes the most
widely used nonlinear disturbance observer design tech-
nique [1, 7]. A generic nonlinear Disturbance Observer
Based Control (DOBC) framework was first proposed
in [15], which provides a design procedure to integrate
the proposed nonlinear disturbance observer with non-
linear controller design methods to form a composite
controller with proven theoretical properties [15, 16].
With a continuous effort in the last decades by Chen
and other researchers, a number of analysis tools and
design processes have been established. The first book
“Disturbance Observer Based Control: Methods and Ap-
plications” authored by him and his collaborators was
published in 2014 [1]. Nonlinear DOBC work has been
gradually attracting a considerable interest worldwide
with a quite wide range of applications. To respond to
increasing interests and research activities in DOBC and
related methods, one special section on IEEE Transac-
tions on Industrial Electronics and one special issue on
the Transactions of Institute of Measurement and Con-
trol have been organised by Chen and his collaborators
as in 2015 and 2016, respectively, as Guest Editors.

3 Nonlinear disturbance observer based
control and discussion

There are basically two control strategies: feedback
and feedforward. Feedforward can be used to compen-
sate the influence of disturbances on output when they
are measurable. Quite often, external disturbances are
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not measurable which significantly limits the applicabil-
ity of the feedforward strategy. The basic idea of the
disturbance observer concept is to design a mechanism
to estimate unmeasurable disturbances. This very idea is
similar to that in the widely used state observer design,
where state observers are designed to estimate the state
of a dynamics system and then the true state variables
are replaced by their estimate in state feedback control
design and implementation if they are not measurable.
When the estimate yielded by the disturbance observer
is integrated with the feedforward strategy, it consti-
tutes the so called Disturbance Observer Based Control
(DOBC) which was named by Chen in the same fashion
as widely used State Observer Based Control.

3.1 The development of nonlinear disturbance ob-
server technique

Next it will explain how the original idea of the nonlin-
ear disturbance observer technique in [2] was inspired
and developed. Consider a general nonlinear system de-
scribed by

⎧
⎪⎪⎨
⎪⎪⎩

ẋ(t) = f (x(t)) + g1(x(t))u + g2(x(t))d(t),

y(t) = h(x(t)),
(1)

where x ∈ Rn, u ∈ R and d ∈ R are the state vector, in-
put and external disturbance respectively. It is assumed
that f (x), g1(x), g2(x) are smooth functions in terms of
x.

To estimate the unknown disturbance d, an intuitive
update law of the disturbance observation would be like

˙̂d(t) = l(x)(d(t) − d̂(t)). (2)

As long as the above equation is stable in some sense
(depending on l(x)), the error between the estimate of
the disturbance, d̂, and the true disturbance, d, drives
the the estimate to converge to the true disturbance.
However the disturbance d is not available.

It follows from the original system dynamic (1) that

g2(x)d = ẋ(t) − f (x) − g1(x)u. (3)

Therefore an intuitive disturbance observer could be
constructed as

˙̂d = l(x)(ẋ − f (x) − g1(x)u − g2(x)d̂), (4)

where l(x) is the nonlinear gain function of the observer.

However, the above disturbance observer cannot be
implemented since the derivative of the state is required.

Inspecting the above equation, it also could be written
as

˙̂d − l(x)ẋ = − f (x) − g1(x)u − g2(x)d̂. (5)

Letting

z(t) = d̂(t) − p(x(t)) (6)

as an intermediate state variable and p(x) is a nonlinear
variable to be decided. One has

ż = ˙̂d − p(x)
x

ẋ. (7)

Therefore, a new nonlinear disturbance observer is
then proposed after modifying the above basic observer,
given by
⎧
⎪⎪⎨
⎪⎪⎩

ż = −l(x)g2(x)z − l(x)[g2(x)p(x) + f (x) + g1(x)u],

d̂ = z + p(x),
(8)

where z ∈ Rm is the internal state variables of the ob-
server and p(x) ∈ Rm is a nonlinear function to be de-
signed. The nonlinear observer gain l(x) is then deter-
mined by

l(x) =
∂p(x)
∂x
. (9)

It has been shown in [3] that the NDOB asymptotically
estimates the disturbance if the observer gain l(x) is
chosen such that

ėd = −l(x)g2(x)ed (10)

is asymptotically stable regardless of x where ed = d− d̂
is the disturbance estimation error.

In the early days of the development, questions and
criticism have been received from many aspects. Most
of the criticisms have their own rights and demanded a
better understanding of the properties of the proposed
nonlinear observer and DOBC techniques. But it also
made the early publication of any results in this area
quite difficult, which was expected, to some extents,
for any new technique. In the next few years, with the
help of the U.K. government grant, significant progress
in establishing their properties, developing design and
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analysis tools and extending to a much wider range of
nonlinear systems and disturbances has been made.

3.2 Properties and further development

3.2.1 Performance under disturbances with bound-
ed derivatives or of high frequency

The stability and convergence property of the pro-
posed nonlinear disturbance observer (NDO)(8) was es-
tablished under the assumption that the disturbance are
slow time varying or unknown constant. However, in
practical applications, external disturbances are quite
complicated and could have many forms (may even
changes from one type of disturbance to another).
Hence they do not necessarily satisfy the slow-time
varying assumption. Although the disturbance torque or
force caused by friction is fast changing, both simulation
and experiment results have confirmed that a promising
performance in tracking non-slow time varying distur-
bance has been demonstrated.How to prove the stability
of the disturbance observer does not destroy by high fre-
quency component of general disturbances? This is not
an issue for linear systems as external disturbance does
not affect stability of the closed-loop systems. However
this is in general not true for nonlinear systems. Rigor-
ous analysis has been presented in [17], which shows
that, as long as the change rate of the disturbance (i.e.
the derivative of the disturbance)is bounded, the stabil-
ity of the proposed NDO (8) stills holds. That is, un-
der a mild condition, the estimate error of the distur-
bance is bounded under any disturbance with bounded
derivative. Therefore the high frequency components
in disturbance would not destroy the stability of the
proposed nonlinear disturbance observer. This signifi-
cantly extends the applicability of the proposed NDO
and NDOBC.

It shall be highlighted that establishing the stability of
the NDO in the presence of high-frequency components
in disturbances does not imply the NDO shall be used to
estimate disturbance of high frequency. It is quite often
confused by many young researchers. In many times, it
was asked whether or not the disturbance observer tech-
niques could be used to estimate high frequency distur-
bance. The answer to this shall be negative. The reasons
are as follows. First, most of the physical systems have
inertia so the influence of high frequency components of
disturbance on the output is much smaller as illustrated
by the frequency response of a typical transfer function
of a dynamic system. Therefore, the disturbance com-
ponents of high frequency are naturally “filtered” out

by the system dynamics. Secondly, in order to estimate
the disturbance of high frequency, the bandwidth of the
disturbance observer has to be quite high which not
only may amplify high frequency noise of sensors, but
also usually requires high observe gains. The latter may
cause saturation problems on actuators and so called
“peak phenomenon” in the transient period which may
de-stabilise the whole closed-loop system. Thirdly, even
if we are able to estimate disturbance of high frequency,
normally actuators do not have an enough bandwidth
(or fast enough) to implement the control command
to counteract the high frequency disturbance. In sum-
mary, the disturbance observer techniques are mainly
used for attenuating disturbances of low and medium
frequency. It is NOT applicable/effective for attenuating
disturbances of high frequency. Certainly high, medium
or law frequency shall be interpreted in the context as
there could mean different frequency ranges for differ-
ent applications.

3.2.2 The existence and the choice of the nonlinear
gain

The observer gain l(x) has to be chosen such that for
any x, the observer error dynamics (10) are asymptoti-
cally stable. There is a key question: does there exist such
a nonlinear function l(x) which is also satisfies (9) such
that the stability of the error dynamics holds regardless
of x for any given nonlinear system? A related question
is how to design such a nonlinear gain function if it does
exist. To answer these two questions, [2] and [15] show
that, as long as the relative degree from the disturbance
to output is well defined, there does exist l(x) such as
the error dynamics (10) is stable regardless of the state
x. That is, the nonlinear disturbance observer (8) con-
verges to the true disturbance regardless of the statu of
the state x. Furthermore, a systematic design method
for the nonlinear observer gain is constructed and the
convergence rate of the estimation could be adjusted by
a tuning parameter. This not only sows the existence but
also greatly simplifies the design of a nonlinear distur-
bance observer in the form of (8).

3.2.3 Separation of controller and disturbance ob-
server design

In addition to its simplicity in its design, a most
promising feature of the proposed disturbance observer
design method and DOBC is that the controller design
could be separated from the disturbance observer design.
This somehow extends the so-called separation princi-
ple in state observer based design for linear systems into
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nonlinear systems. In the state observer based control
design, a state feedback control law is designed under
the assumption that all the state are available. If the state
variables are not available, a state observer, e.g., Luen-
berger observer or Kalman filter, is designed to estimate
the state and the states in the control law are replaced
by their measurements. It is shown that the state ob-
server design can be separated from control design for
linear systems under certain conditions. This is known
as a separation principle, more formally known as a
principle of separation of estimation and control. Due
to the special feature of the proposed nonlinear systems
in (8), the convergence of the observer does not de-
pend on the state of the nonlinear systems. Therefore,
the proposed NDO can be integrated with any nonlinear
control design method to improve its disturbance rejec-
tion or/and robustness under certain conditions. In the
design framework, a feedforward control strategy is first
developed under the assumption that the disturbance
is measurable, and then it is replaced by its estimate
yielded by the disturbance observer. This realises the
separation principle but for nonlinear systems. It is be-
lieved that this very feature makes this specific DOBC
design very attractive so becomes the most successful
design method in this area.

4 Nonlinear PID for robotic manipulators

Another open question is what is the link between
DOBC or related methods with controllers with inte-
gral action. As the disturbance observer based control
technique can remove the steady state influence of dis-
turbance on the output, it essentially achieves the “off-
set free” feature as the introduction of integral action.
Actually an earliest work in this area by Johnson was mo-
tivated to develop a control method that could realises
offset free under external unknown disturbance in the
state space approach. In early 60’s, state space meth-
ods were rapidly developed and received a wide range
of attention. External disturbance and modelling errors
widely exist and it is quite easy to achieve zero steady
state error by introducing an integral action. However,
it was not clear how to realise this modern state space
approach which significantly restricted the application
of state space design methods. With the help of state
estimation methods, by introducing unknown input ob-
server concept, Prof Johnson proposed “Disturbance Ac-
commodation Control” to address this problem [5,18].
Therefore, a natural question is what is the link between

DOBC and integral control such as PID. The relation-
ship is not as simple and straightforward as someone
might think. Obviously both of them are able to achieve
zero steady state error under unknown constant distur-
bance or modelling uncertainty. More specifically, [2]
has proved that by integrating a nonlinear disturbance
observer with a nonlinear predictive controller, a DOBC
can reduce to a nonlinear PI or PID controller depend-
ing on the relative degree of the nonlinear systems to
be controlled. In the following, we further explore this
relationship by investigating a specific case – a two link
robotic manipulator.

4.1 Nonlinear predictive control

The dynamics of a two-link robotic manipulator can
be described by a second order matrix equation, given
by

J(θ(t))θ̈(t) + G(θ(t), θ̇(t)) = Bu(t) + d′(t), (11)

where θ ∈ R2, θ̇ ∈ R2 and θ̈ ∈ R2 denote the displace-
ment, velocity and acceleration vectors of the robotic
manipulator, respectively, u ∈ R2 the vector of the gen-
eralized torque and/or force, d′ the unknown exogenous
disturbance vector and J(θ) ∈ R2×2 the inertia matrix.
G(θ, θ̇) consists of Coriolis and centrifugal terms and
the gravitational term, etc. In general, the matrix J(θ) is
positive definite for all allowable θ. When the first or-
der dynamics of DC motors are included in the above
model, u is the voltage vector imposed on the motors
instead of the torque vector. In general the input matrix
B ∈ R2×2 is of full rank. For the sake of simplicity, the
disturbance d′(t) ∈ R2 is equivalent to the disturbance d
on the control input u(t) in this paper. Hence Equation
(11) can be represented as

J(θ(t))θ̈(t) + G(θ(t), θ̇(t)) = B(u(t) + d(t)). (12)

Suppose that the controlled output y ∈ R2 is the combi-
nation of the displacements of the robotic manipulator,
i.e.,

y(t) = Cθ(t), (13)

where C ∈ R2×2 is a constant matrix of full rank and in
many cases, C is a unit matrix.

In the controller design, first it is supposed that there
are no exogenous disturbances. In Section 4.2, we will
discuss how to design a nonlinear observer to estimate
the disturbance d and then compensate for it.
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Model predictive control (MPC) performance index is
adopted [9], given by

J =
1
2

� T2

T1
(y(t + τ)−yd(t + τ))T(y(t + τ)−yd(t + τ))dτ,

(14)

where T1 and T2 are the minimum and maximum pre-
dictive times respectively. yd ∈ R2 is the reference tra-
jectory vector.

At time instant t, the future output y(t+τ), τ ∈ [T1,T2],
is predicted using Taylor series expansion, which is a
function of the current system state x(t) and future in-
put in the time period [t, t + T2]. Then a control profile
u′(t+τ), τ ∈ [0,T2] is generated by minimizing the track-
ing error performance index (14). However as in other
receding horizon control algorithms, only the control
action at time instant t is implemented, i.e.,

u(t) = u′(t + τ) for τ = 0.

Then the above process is repeated as time goes. When
the future output is predicted using Taylor expansion up
to any order larger than or equal to 2, [9] showed that
the model predictive controller can be given in a closed
form. For the robotic manipulator (12) and (13) in the
absence of disturbances, the nonlinear MPC law is given
by

u�(t)=−(CJ−1(θ)B)−1{K1(y − yd) + K2(ẏ − ẏd)
−CJ−1(θ)G(θ, θ̇) − ÿd}, (15)

where the feedback gain matrices K1 and K2 are deter-
mined by

K1 = T̄−1
33 T̄31, (16)

K2 = T̄−1
33 T̄32, (17)

T̄i j =
T̄i+ j−1

2 − T̄i+ j−1
1

(i − 1)!( j − 1)!(i + j − 1)
(18)

and

T̄i = diag{Ti,Ti}, i = 1, 2. (19)

Note that the notation 0! = 1 is used here. It is obvious
that the gain matrices K1 and K2 depend on the choice
of the predictive times T1 and T2 explicitly. By adjust-
ing these two design parameters, the desired system
response can be achieved. [9] provides the criterion for
choosing the design parameters in MPC based on over-
shoot and rising time specifications. Let the tracking er-

ror be defined by

e = yd − y. (20)

Stability of the above nonlinear predictive control can
be established by applying the stability results in [9] for
the robotic manipulator (12).

Theorem 1 Suppose that reference trajectory yd and
its derivative ẏd are defined for all t � 0 and bounded.
In the absence of exogenous disturbances, the closed-
loop system under the nonlinear predictive control (15)
can exponentially track the desired reference yd(t) for
all t � 0.

4.2 Nonlinear disturbance observer

In Section 4.1, it is assumed that there are no distur-
bances. To compensate for the effect of the unknown
exogenous disturbance d, a nonlinear disturbance ob-
server is designed to estimate it. The nonlinear distur-
bance observer used in this paper is given by

ż = −L(θ)z + L(θ)(G(θ, θ̇) − Bu − p(θ̇)) (21)

and

d̂ = B−1(z + p(θ̇)), (22)

where z ∈ R2 and d̂ ∈ R2 are the observer state and the
estimate of the disturbance d, respectively. The auxil-
iary variable p(θ̇) and the nonlinear observer gain matrix
L(θ) are given by

p(θ̇) =

⎡
⎢⎢⎢⎢⎢⎣

w1θ̇1

w1θ̇1 + w2θ̇2

⎤
⎥⎥⎥⎥⎥⎦ , (23)

and

L(θ) =WJ−1(θ), (24)

respectively where w1 and w2 are gains to be designed
and

W =

⎡
⎢⎢⎢⎢⎢⎣

w1 0

w1 w2

⎤
⎥⎥⎥⎥⎥⎦ . (25)

The convergence rate of this observer can be adjusted
by the choice of the constants w1 and w2.

Stability of the above nonlinear disturbance observer
is stated in Theorem 2 and the proof of Theorem 2 is
given in the appendix.
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Theorem 2 For a two-link robotic manipulator (12)
and (13) under unknown exogenous constant distur-
bances, the estimation yielded by the disturbance ob-
server (21) and (22) converges to the disturbance expo-
nentially, if W in (25) satisfies

w2 � w1 > Xθ̇2m, (26)

where θ̇2m denotes the maximum velocity of the second
link and X is an inertial parameter depending on the tip
and second link masses and the lengths of the first and
second links (see (50) or [19]).

In order to develop the stability result, it is assumed
that the disturbances are unknown constants. However,

as shown in [3] and by experimental results in this pa-
per, this assumption is not necessary in some cases (see
further discussion in Section 5).

4.3 Nonlinear PID predictive controller

The control system diagram for robotic manipulators
proposed in this paper is shown in Fig. 1. The controller
consists of two parts–the nonlinear predictive controller
in Section 4.1 and the nonlinear disturbance observer in
Section 4.2. In this and the following sections, we will
investigate the properties of this control system scheme.
It will be shown that this composite controller is equiv-
alent to a nonlinear PID controller and stability of the
composite controller will be established.

Fig. 1 Robotic manipulator controller structure with the nonlinear disturbance observer.

When a disturbance is presented in the control input
channel and measurable, a simple feedforward strategy
can be adopted. A combined feedback and feedforward
configuration is given by

u(t) = u(t)∗ − d̂(t), (27)

where u(t)∗ and d̂ are given by the nonlinear MPC (15)
and the true disturbance is replaced by its estimate given
by the the nonlinear disturbance observer (21) and (22).
The control configuration diagram is shown in Fig. 1.

It follows form (22)–(24) that

˙̂d =B−1(ż +
∂p(θ̇)

∂θ̇
θ̈)

=B−1(ż +Wθ̈)
=B−1(ż + L(θ)J(θ)θ̈)
=B−1L(θ)(−z + G(θ, θ̇) − Bu − p(θ̇) + J(θ)θ̈), (28)

where the last equality follows form the nonlinear ob-
server equation (21).

Invoking (22) and the nonlinear MPC (15) and (27)

into (28) gives

˙̂d= B−1L(θ)(−Bd̂ + G(θ, θ̇) − Bu + J(θ)θ̈)
= B−1L(θ)(−Bu� + G(θ, θ̇) + J(θ)θ̈)
=−B−1L(θ)(J(θ)C−1(K1e + K2ė + CJ−1(θ)G(θ, θ̇)
+ÿd) − G(θ, θ̇) − J(θ)θ̈)

=−B−1L(θ)J(θ)C−1[ I K2 K1 ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ë

ė

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=−B−1WC−1[ I K2 K1 ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ë

ė

e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (29)

Integration of (29) from the initial time 0 to t yields

d̂(t)=−B−1WC−1[ I K2 K1 ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ė(t)

e(t)� t

0
e(τ)dτ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+B−1WC−1ė(0)
+B−1WC−1K2e(0) + d̂(0). (30)
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When the initial disturbance estimate is chosen as

d̂(0) = −B−1WC−1ė(0) − B−1WC−1e(0). (31)

Equation (30) becomes

d̂(t) = −B−1WC−1(ė(t) + K2e(t) + K1

� t

0
e(τ)dτ). (32)

Then substituting the disturbance estimate (32) and the
nonlinear MPC (15) into the control law (27) yields

u= u(t)∗ − d̂(t)
= (CJ−1(θ)B)−1(K1e + K2ė + ÿd) + B−1G(θ, θ̇)
+B−1WC−1(ė(t) + K2e(t)

+K1

� t

0
e(τ)dτ). (33)

This composite controller can be further written in the
PID controller structure, given by

u = P(θ)e(t) +D(θ)ė(t) + I
� t

0
e(τ)dτ +N(θ, θ̇) (34)

with the proportional gain

P(θ) = B−1(J(θ)C−1K1 +WC−1K2), (35)

the derivative gain

D(θ) = B−1(J(θ)C−1K2 +WC−1), (36)

the integral gain

I = B−1WC−1K1 (37)

and

N(θ, θ̇) = B−1(J(θ)C−1 ÿd + G(θ, θ̇)). (38)

This controller is referred to as a nonlinear PID predictive
controller as shown in Fig. 2 where x denotes the state
vector of the robotic manipulator, i.e., x = [θ; θ̇].

d

Fig. 2 Nonlinear PID predictive controller.

The proportional and direvative coefficients are non-
linear functions of the displacements of the links θ. In
addition to the traditional PID structure, a prediction part
N(x) (see (28)) is included in this controller. It consists
of two terms. The first term B−1J(θ)C−1 ÿd takes into
account the control input requirement for future out-
put using the second order derivative of the reference
signal (note that the first derivative of the reference is
employed by the PID part.) The latter term B−1G(θ, θ̇) is
to make up the influence of the current system’s dynam-
ics on future output. Hence N(x) takes into account the
influence of the current system’s dynamics on future
output and the input requirement for tracking future
reference. This can be explained from the fact that this

controller is derived from the predictive control method
in Section 4.1.

4.4 Stability

Stability is essential for a control system. It is impor-
tant to investigate stability of the composite controller
consisting of the nonlinear predictive control (15) and
the nonlinear disturbance observer (21) and (22).

Define the observer error as

e1 = d − d̂. (39)

Since it is assumed that the disturbances are unknown
constant, it follows from the observer (21), (22) and the



W.-H. Chen / Control Theory Tech, Vol. 16, No. 4, pp. 284–300, November 2018 293

system model (12) that

ė1 = ḋ − ˙̂d
=−B−1L(θ)B(d − d̂)
=−B−1L(θ)Be1. (40)

Furthermore substituting the control law (27) into the
manipulator dynamics yields

J(θ)θ̈ + G(θ, θ̇) = B(u� − e1). (41)

Invoking (15) into (41) together with (40) yields the the
closed-loop error dynamics of the robotic manipulator
under the composite controller, given by

⎧
⎪⎪⎨
⎪⎪⎩

J(θ)C−1(ë(t) + K2ė(t) + K1e(t)) + Be1(t) = 0,

ė1 = −B−1L(θ)Be1(t).
(42)

Theorem 3 Consider the two-link robotic manipu-
lator (12) and (13) with unknown exogenous constant
disturbances. Suppose that yd and ẏd are defined and
bounded for t � 0. The two-link robotic manipulator un-
der the composite controller consisting of the nonlinear
MPC (15) and the nonlinear disturbance observer (21),
(22) as in Fig. 1, i.e., the nonlinear PID predictive con-
troller (34), exponentially tracks the reference trajectory
yd if the condition (26) is satisfied.

The proof of the above stability result is given in the
appendix.

Remark 1 Theorem 3 states that as long as the max-
imum velocity of the second link, i.e., θ̇2m, satisfies con-
dition (26), the robotic manipulator under the nonlin-
ear PID controller developed in this paper can track
the reference trajectory yd in the presence of unknown
constant disturbances. It can be shown that the maxi-
mum velocity of the robotic manipulators depends on
the maximum velocity of the reference trajectory, the
initial position and velocity error between the robotic
manipulator and the reference, and the disturbances im-
posed on the robotic manipulator. This is easy to under-
stand from physical properties of the robotic manipula-
tor. In particular, when there is no initial error between
the position and velocity of the robotic manipulator and
the reference, the bound of the maximum velocity only
depends on the maximum velocity of the reference tra-
jectory and the size of the disturbances.

5 Experimental results

5.1 Experiment setting

The proposed nonlinear PID predictive control is im-
plemented on a two-link horizontal robotic manipula-
tor in the laboratory. The experiment layout is shown
in Fig. 3. In this experiment, a direct drive motor is at-
tached to each joint and potentiometers and tachometer
are mounted at the end of each link to measure the po-
sition and the velocity of the links. Since the outputs of
the tachometers are quite noisy, the signals from the
tachometers are filtered by digital filters before used to
calculate the control action. The motor dynamics are
approximately represented by a first order model. The
definitions of the position and its direction of two links
are given in Fig. 4.

Fig. 3 System layout of the experiment.

Fig. 4 A two link robotic manipulator.

All the calculation in the nonlinear controller and the
nonlinear disturbance observer is performed by dSPACE.
The physical data and parameters of this system are
given in the table of the appendix. Two controllers are
implemented and compared. One is the MPC without
disturbance observer and the other the nonlinear PID
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predictive controller proposed in this paper (e.g., the
combination of MPC with the nonlinear disturbance).

5.2 Experimental results

The experimental results for MPC and the proposed
nonlinear PID predictive controller are shown in Figs. 5
and 6, respectively, which are directly taken from
dSPACE trace window. In both Figs. 5 and 6, the first
column and the second column are for the first link
and the second link respectively, and the motor input ui

(V), velocity θ̇i ((◦) · s−1), displacement θi (◦) and refer-
ence signal ydi (◦) are displayed in the order from the
top to the bottom. The reference signal for each link

is generated by the output of a stable transfer function
Gr(s) driven by a pulse generator with the amplitude 90
degree. The transfer function Gr(s) can be considered
as a desired model that the robotic manipulator should
follow. It represents the tracking performance specifica-
tions and is chosen as

Gr(s) =
1

s2 + 1.8s + 1
(43)

for the both links in the experiment. It is obvious that the
reference signal generated by the above model driven
by a pulse generator is smooth and differentiable up to
second order.

Fig. 5 Experimental result of Nonlinear PID predictive controller Vi: the velocity of ith link; Pi: the position of ith link.
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Fig. 6 Experimental result of model predictive control without disturbance observers.

In the MPC, the predictive times in the performance
index (14) are chosen as T1 = 0 and T2 = 1/1.2 s and
used in (15). The nonlinear PID predictive control uses
the same parameters but with a a disturbance observer
and its observer gains are selected as

w1 = 1 and w2 = 2. (44)

The tracking performances of the proposed nonlinear
PID predictive control and the MPC are further com-
pared in Figs. 7 and 8. The nonlinear PID controller sig-
nificantly improves the tracking performance. There are
two important factors degrading the performance of the
MPC in this experiment. One is friction and the other is
the mismatch between the model used for the controller
design and the real robotic manipulator.

For the nonlinear PID predictive controller, since it
is derived from integration of the nonlinear predictive
controller and the nonlinear disturbance observer, the
observer considers the disturbance torque caused by the
friction as a part of disturbances and estimates and then
compensates for it. The tracking performance in Figs. 7
and 8 shows that the nonlinear PID predictive controller
works well against friction. The tracking error in state
steady is removed.

In modelling the two-link robotic manipulator, the ef-
fects of the sensors, connection, wire, etc, are ignored.
The controller is directly generated based on the dy-
namic model of the robotic manipulator and the phys-
ical parameters in the table of the appendix. Due to
the mismatch between the model and the real robotic
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manipulator, the coupling effect between the two links
cannot be completely removed by MPC and this is evi-
dent by the fact in Figs. 7 and 8.

Fig. 7 Nonlinear PID predictive controller versus computed
torque control: First link.

Fig. 8 Nonlinear PID predictive controller versus computed
torque control: Second link.

At the beginning of the experiment, the first link
moves to track the reference signal. It is required that
the second link maintains the relative degree between
the first link and the second link to be zero during the
period 0 – 5 s. However, Fig. 8 shows that for MPC the
second link has significant tracking error. In the pro-
posed nonlinear PID predictive controller, the remain-
ing coupling effect due to the unmodelled dynamics is
considered as an unknown disturbance, and the built-in
disturbance observer estimates and then compensates
for it. The similar phenomenon occurs at 5 s when the
second link starts to track its reference trajectory. As

shown in Fig. 7, compared with the MPC, the nonlinear
PID predictive controller greatly reduces the tracking er-
ror of the first link caused by the coupling effect. This is
clearly evident that the nonlinear PID controller exhibits
quite good performance robustness.

6 Conclusions

This paper provides a history account of the devel-
opment of the nonlinear disturbance observer. It starts
from the motivation, the intuitive idea of the techni-
cal development and the original disturbance observer
design method, and then presents the criticism it has
received and the features of the DOBC method. The
simplicity of its design and the separation of the dis-
turbance observer from control design are two most at-
tractive features. In this sense, it is very similar to widely
used Lunegerber observer or Kalman filter techniques.
Certainly there may be still a room to further improve
the deign and analysis methods. Hopefully, with all the
effort, it will eventually become a powerful tool for engi-
neers and as widely popular and used as state observer
design techniques.

Then the paper focuses on a special aspect of the pro-
posed method and tries to build up more understanding
between the DOBC approach and controllers with in-
tegral action. To this case, rather than trying to answer
this question in a generic sense, it chooses the very
first case study that motivated the development of the
nonlinear disturbance observer design technique – a two
link robotic manipulator to investigate their relationship.
A predictive controller is firstly designed using a track-
ing performance index and the a nonlinear disturbance
observer is designed for the two link manipulator. By
carefully choosing the initial state of the nonlinear ob-
server and the observer gain function, it is shown that
the combination of the nonlinear predictive controller
with a disturbance observer under these special choices
actually reduces to a nonlinear PID controller. However
it shall be noticed that this conclusion holds only under
a number of assumptions: a specific nonlinear baseline
controller, a specific choice of the nonlinear observer
gain and the specific choice of the initial estimate of
the disturbance. On the other side, there are some sig-
nificant differences between these two methods. First,
DOBC is a two degrees of freedom control configura-
tion with both a baseline controller and an addon dis-
turbance observer while a controller with integral action
(e.g., PID) is one degree of freedom control configura-
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tion. Secondly, integral action in a controller affects both
regulation/tracking and disturbance attenuation perfor-
mance while a disturbance observer mainly affects dis-
turbance attenuation and robustness gainst uncertainty.
For example, when a set point changes, the integral ac-
tion will kick in and cause overshoot. But the disturbance
observer loop is not active in the presence of the change
of a set point. More research shall be carried out in un-
derstanding the relationship between these two types of
control mechanisms.
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Appendix
Proof of Theorem 2 The proof is modified from the proof

of Theorem in [3]. The main difference is that the different
observer gains are allowable for different links in Theorem 2.

First let d′ = Bd and, following (22), its estimate is given by

d̂′ = z + p(θ̇), (a1)

where z and p(θ̇) are given by (21) and (23) respectively. It
is obvious that in order to prove stability of the observer (21)
and (22) for d, it suffices to prove that the observer for d′ is
exponentially stable.

Since p(θ̇) is given by (23), we have

dp(θ̇)
dt

=Wθ̈. (a2)

Let

e′ � d′ − d̂′.

It follows form (21), (a1), (a2) and (24) that

ė′ = ḋ′ − ˙̂d′

= −ż − dp(θ̇)
dt

= L(θ)(z − G(θ, θ̇) + Bu + p(θ̇)) −Wθ̈
= L(θ)(d̂′ − G(θ, θ̇) + Bu − J(θ)θ̈). (a3)

Invoking (12) into the above equation yields

ė′ = −L(θ)(Bd − d̂′). (a4)

Hence the estimate error of d′ is governed by

ė′ = −L(θ)e′. (a5)
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The inertial matrix J(θ) for a two-link manipulator is given
by [19]

J(θ) =

⎡
⎢⎢⎢⎢⎢⎣

j1 + 2X cos θ2 j2 + X cos θ2

j2 + X cos θ2 j3

⎤
⎥⎥⎥⎥⎥⎦ , (a6)

where j1, j2, j3 and X are inertial parameters which depend on
the masses of the links, motors and tip load and the lengths of
the links.

A candidate Lyapunov function for the observer (21) and
(a1) is chosen as

V(e′, θ) = (e′)T(W−1)T J(θ)W−1e′. (a7)

Differentiating the Lyapunov function with respect to time t
along the observer trajectory gives

dV(e′, θ)
dt

=
∂V(e′, θ)
∂e′

ė′ +
∂V(e, θ)
∂θ

θ̇

= −(e′)T(W−1)T J(θ)W−1L(θ)e′

−(e′)T(W−1)TL(θ)T J(θ)W−1e′

+(e′)T(W−1)T

⎡
⎢⎢⎢⎢⎢⎣

−2Xθ̇2 sinθ2 −Xθ̇2 sinθ2

−Xθ̇2 sinθ2 0

⎤
⎥⎥⎥⎥⎥⎦W

−1e′

= −(e′)T(W−1)Te′ − (e′)TW−1e′

+
Xθ̇2 sinθ2

(w1w2)2 (e′)T

⎡
⎢⎢⎢⎢⎢⎣

−2w2(w2 − w1) −w1w2

−w1w2 0

⎤
⎥⎥⎥⎥⎥⎦ e

′

= − 1
w1w2

(e′)T

⎡
⎢⎢⎢⎢⎢⎣

2w2 −w1

−w1 2w1

⎤
⎥⎥⎥⎥⎥⎦ e

′

+
Xθ̇2 sinθ2

w1w2
(e′)T

⎡
⎢⎢⎢⎢⎢⎢⎣

−2(
w2

w1
− 1) −1

−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

e′

= − 1
w1w2

(e′)T

⎡
⎢⎢⎢⎢⎢⎢⎣

2w2+2(
w2

w1
−1)Xθ̇2 sinθ2 −w1+Xθ̇2 sinθ2

−w1 + Xθ̇2 sinθ2 2w1

⎤
⎥⎥⎥⎥⎥⎥⎦

e′.

Hence
dV(e′, θ)

dt
< 0 for all e′ and θ, θ̇ if

∣∣∣∣∣∣∣∣

2w2 + 2(
w2

w1
− 1)Xθ̇2 sinθ2 −w1 + Xθ̇2 sinθ2

−w1 + Xθ̇2 sinθ2 2w1

∣∣∣∣∣∣∣∣
> 0. (a8)

That is,

4(w1w2 + (w2 − w1)Xθ̇2 sinθ2) − (−w1 + Xθ̇2 sinθ2)2 > 0,
(a9)

which can be further rewritten as

4(w1 + Xθ̇2 sinθ2)(w2 − w1) + 4w2
1

− (−w1 + Xθ̇2 sinθ2)2 > 0. (a10)

Since w1 and w2 satisfy (26), this implies

4(w1 + Xθ̇2 sinθ2)(w2 − w1) � 0 (a11)

and

4w2
1 − (−w1 + Xθ̇2 sinθ2)2

= (w1 + Xθ̇2 sinθ2)(3w1 − Xθ̇2 sinθ2) > 0. (a12)

Hence the inequality (54) is met. Since the Lyapunov function
(51) is positive definite and its derivative along the trajectory
is negative if condition (26) is met, this implies that the system
approaches to the equilibrium (e′ = 0) exponentially. Therefore
the estimation yielded by the disturbance observer converges
to the disturbances exponentially. �

Proof of Theorem 3 Let

e2 � e, e3 � ė, (a13)

where e is the tracking error and ė its derivative of the tracking
error. The first error equation in (42) can be written as

˙̄e(t) = Aē +

⎡
⎢⎢⎢⎢⎢⎣

0

CJ−1(θ)Be1

⎤
⎥⎥⎥⎥⎥⎦ , (a14)

where

A �

⎡
⎢⎢⎢⎢⎢⎣

0 I

−K1 −K2

⎤
⎥⎥⎥⎥⎥⎦ (a15)

and

ē �

⎡
⎢⎢⎢⎢⎢⎣

e2

e3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

e

ė

⎤
⎥⎥⎥⎥⎥⎦ . (a16)

Define a candidate Lyapunov function as V(ē) = ēTPē where P
is given by the Lyapunov equation

ATP + PA = −Q, (a17)

and Q is a positive definite matrix. In the absence of the ob-
server error e1, the error dynamics of the closed-loop system
(a14) reduces to ˙̄e = Aē. Theorem 1 implies that the matrix
A in (a15) is stable. Thus it can be shown that P is positive
definite when Q is positive definite.

The derivative of the Lyapunov function with respect to time
t associated with the system (42) is given by

V̇(ē) = 2ēTP ˙̄e

= ēT(ATP + PA)ē + 2ēTP

⎡
⎢⎢⎢⎢⎢⎣

0

CJ−1(θ)Be1

⎤
⎥⎥⎥⎥⎥⎦

= −ēTQē + 2ēTP

⎡
⎢⎢⎢⎢⎢⎣

0

CJ−1(θ)Be1

⎤
⎥⎥⎥⎥⎥⎦

� −λmin(Q) ‖ē‖2 + 2‖ē‖
∥∥∥P

⎡
⎢⎢⎢⎢⎢⎣

0

CJ−1(θ)Be1

⎤
⎥⎥⎥⎥⎥⎦

∥∥∥

� −λmin(Q) ‖ē‖2 + 2c1‖ē‖ ‖e1‖, (a18)



W.-H. Chen / Control Theory Tech, Vol. 16, No. 4, pp. 284–300, November 2018 299

where λmin(·) denotes the minimum eigenvalue of a matrix and
‖ · ‖ denotes the Euclidean norm of a vector and the induced
Euclidean norm for a matrix. c1 is a constant defined by

c1 � ‖P‖max
θ
‖CJ−1(θ)B‖.

This implies that

V̇(ē) < 0 if ‖ē‖ > 2c1

λmin(Q)
‖e1‖. (a19)

Let

γ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

ė

e1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

ē

e1

⎤
⎥⎥⎥⎥⎥⎦ . (a20)

Then we have

‖γ0‖ �
∥∥∥∥∥∥∥

ē(0)

e1(0)

∥∥∥∥∥∥∥
. (a21)

According to the definition of the Lyapunov function V(ē), the
following property holds

λmin(P)‖ē‖2 � V(ē) � λmax(P)‖ē‖2 (a22)

where λmax(P) denotes the maximum eigenvalue of the matrix
P.

It follows from (a19) and (a22) that

V(ē) � max{λmax(P)‖ē(0)‖2, λmax(P)(
2c1

λmin(Q)
)2‖e1(0)‖2}

for all t � 0. (a23)

Invoking (a21) into the above inequality yields

V(ē(t)) � c2‖γ0‖2 for all t � 0. (a24)

where

c2 � max{λmax(P), λmax(P)(
2c1

λmin(Q)
)2}. (a25)

Together with (a22), equation (a24) implies

‖ē‖ � c3‖γ0‖ for t � 0, (a26)

where c3 is a constant depending on c2 and λmin(P).
Theorem 2 shows that the estimation of the nonlinear dis-

turbance observer (21) and (22) converges to the disturbances
exponentially if the condition (26) is satisfied. This implies
there exist constants c4 and d1 such that

‖e1‖ � c4‖e1(0)‖e−d1t (a27)

for all t � 0.

Substituting (a22), (a27) and (a26) into (a18) gives

V̇(ē) � −d2V(ē) + 2c1c4‖ē‖ ‖e1(0)‖e−d1t

� −d2V(ē) + 2c1c4c3‖γ0‖ ‖e1(0)‖e−d1t

� −d2V(ē) + c5‖γ0‖2e−d1t, (a28)

where

d2 �
λmin(Q)
λmax(P)

, c5 � 2c1c4c3.

The above inequality implies that [20]

V(ē) � V(ē(0))e−d2t + c5‖γ0‖2e−d3t, (a29)

where

d3 � min{d1, d2}. (a30)

It follows from (a29) that

V(ē) � λmax(P)‖ē(0)‖2e−d2t + c5‖γ0‖2e−d3t

� λmax(P)‖γ0‖2e−d3t + c5‖γ0‖2e−d3t

= (λmax(P) + c5)‖γ0‖2e−d3t

= c6‖γ0‖2e−d3t, (a31)

where

c6 � λmax(P) + c5. (a32)

Invoking (a22) into equation (a31) yields

‖ē‖ � c7‖γ0‖e−d3t/2, (a33)

where c7 is a constant depending on c6 and λmin(P).
Combining (a27) and (a33) gives

⎧
⎪⎪⎨
⎪⎪⎩

‖e1‖ � ‖e1(0)‖e−d1t � ‖γ0‖e−d1t,

‖ē‖ � c7‖γ0‖e−d3t/2.
(a34)

Hence the tracking errro and the estimation error closed-loop
system under the nonlinear MPC (15) and the nonlinear ob-
server (21) and (22) converge to zero exponentially. The non-
linear PID predictive controller (34) is equivalent to the com-
posite controller when the initial disturbance estimate in the
nonlinear disturbance observer is chosen as equation (31).
This completes the proof. �

The physical parameters for experiments are as follows:
First and second link lengths: 0.38 m
Second motor mass: 0.44 kg
Tip mass in the end point : 0.1 kg
First and second link masses : 0.361 kg
First motor torque constant: 0.23 Nm/A
Second motor torque constant: 0.044 Nm/A
First motor voltage constant : 0.29 V/rad/s
Second motor voltage constant: 0.047 V/rad/s
Armature resistance of Motor 1: 3.4Ω
Armature resistance of Motor 2: 5Ω
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