Skip to main content
Log in

An adaptive sliding mode controller design to cope with unmatched uncertainties and disturbance in a MEMS voltage reference source

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Tunable micro-electro-mechanical systems (MEMS) capacitors as the fundamental parts are embedded in MEMS AC voltage reference sources (VRS). Being concerned with the accuracy of the output voltage in the reference sources, it gets important to address uncertainties in the physical parameters of the MEMS capacitor. The uncertainties have the great inevitable potentiality of bringing about output voltage perturbation. The output deterioration is more remarkable when the uncertainties are accompanied by disturbance and noise. Manufacturers have been making great attempts to make the MEMS adjustable capacitor with desired rigorous physical characteristics. They have also tried to mitigate physical parameter veracity. However, ambiguity in the values of the parameters inescapably occurs in fabrication procedures since the micro-machining process might itself suffer from uncertainties. Employing a proportional integral (PI) adaptive sliding mode controller (ASMC), both terms of matched and unmatched uncertainties as well as the disturbance, are addressed in this work for the MEMS AC VRS so that a strict voltage is stabilized while the system is simultaneously subjected into uncertainties and exogenous disturbance. Cross-talk, some inertial forces, and electrostatic coercions may appear as matched and unmatched disturbances. Alteration in stiffness and damping coefficients might also take place as matched uncertainties due to variations in the fabrication process or even working environment. The simulation results in the paper are persuasive and the controller design has shown a satisfactory tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Suhonen, M., Seppa, H., Oja, A., Heinila, M., & Nakki, I. (1998). AC and DC voltage standards based on silicon micromechanics. In Conference on Precision Electromagnetic Measurements Digest (pp. 23–24). Washington, D.C. https://doi.org/10.1109/CPEM.1998.699739.

  2. Kärkkäinen, A., Pesonen, N., Suhonen, M., Kyynarainen, J., Oja, A., Manninen, A., et al. (2004). AC voltage reference based on a capacitive micromechanical component. In Conference on Precision Electromagnetic Measurements Digest (pp. 119–120). London. https://doi.org/10.1109/CPEM.2004.305489.

  3. Kärkkäinen, A., Pekko, P., Dekker, J., Pesonen, N., Suhonen, M., Oja, A., et al. (2005). Stable SOI micromachined electrostatic AC voltage reference. Microsystem Technologies, 12(1–2), 169–172. https://doi.org/10.1007/s00542-005-0005-y.

    Article  Google Scholar 

  4. Blard, F., Bounouh, A., Bélières, D., Camon. H. (2011). Very high stability achievement in MEMS based AC voltage references. In IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 656–659). Cancun. https://doi.org/10.1109/MEMSYS.2011.5734510.

  5. Bounouh, A., Camon, H., Bélières, D., Blard, F., & Ziadé, F. (2011). MEMS AC voltage reference for miniaturized instrumentation and metrology. Computer Standards and Interfaces, 33(2), 159–164. https://doi.org/10.1016/j.csi.2010.06.007.

    Article  Google Scholar 

  6. Bounouh, A., Camon, H., Belieres, D. (2012). MEMS based AC voltage references with very high stability. In Conference on Precision Electromagnetic Measurements (CPEM) (pp. 552–553). Washington, D.C. https://doi.org/10.1109/CPEM.2012.6251048.

  7. Bounouh, A., Camon, H., & Belieres, D. (2013). Wideband high stability MEMS-based AC voltage references. IEEE Transactions on Instrumentation and Measurement, 62(6), 1646–1651. https://doi.org/10.1109/TIM.2012.2225963.

    Article  Google Scholar 

  8. Kärkkäinen, A., Oja, A., Kyynäräinen, J., Kuisma, H., & Seppä, H. (2004). Stability of electrostatic actuation of MEMS. Physica Scripta, T114, 193–194. https://doi.org/10.1088/0031-8949/2004/T114/048.

    Article  Google Scholar 

  9. Fei, J., & Batur, C. (2009). A novel adaptive sliding mode control with application to MEMS gyroscope. ISA Transactions, 48(1), 73–78. https://doi.org/10.1016/j.isatra.2008.10.008.

    Article  Google Scholar 

  10. Ranjbar, E., & Suratgar, A. A. (2018). Design of a composite adaptive controller for the single-axis 2-DOF MEMS vibratory gyroscope with the competency of rotation rate measurement. Control Engineering and Applied Informatic, 20(3), 36–49.

    Google Scholar 

  11. Ranjbar, E., & Suratgar, A. A. (2019). A composite adaptive controller design for 3-DOF MEMS vibratory gyroscopes capable of measuring angular velocity. Iranian Journal of Science and Technology, Transactions of Electrical Engineering., 43, 245–266. https://doi.org/10.1007/s40998-018-0101-5.

    Article  Google Scholar 

  12. Mondal, S., & Mahanta, C. (2013). Adaptive integral higher order sliding mode controller for uncertain systems. Journal of Control Theory and Applications, 11(1), 61–68. https://doi.org/10.1007/s11768-013-1180-5.

    Article  MathSciNet  MATH  Google Scholar 

  13. Talole, S. E. (2018). Active disturbance rejection control: Applications in aerospace. Control Theory and Technology, 16(4), 314–323. https://doi.org/10.1007/s11768-018-8114-1.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sinha, S., & Mandal, N. (2019). Design of a smart pressure transmitter and its temperature compensation using artificial neural network. Journal of Control, Automation and Electrical Systems, 30(1), 95–103. https://doi.org/10.1007/s40313-018-00430-1.

    Article  Google Scholar 

  15. Mandal, S., Kumar, A., Chatterjee, K., Kumar, A., & Hanumaiah, N. (2014). Feasibility study on the use of 2-dimensional penalized spline trajectory for smooth curve generation in precision machining. Journal of Control, Automation and Electrical Systems, 25(5), 576–584. https://doi.org/10.1007/s40313-014-0138-2.

    Article  Google Scholar 

  16. Fei, J. (2010). Robust adaptive vibration tracking control for a micro-electro-mechanical systems vibratory gyroscope with bound estimation. IET Control Theory Applications, 4(6), 1019–1026. https://doi.org/10.1049/iet-cta.2008.0199.

    Article  Google Scholar 

  17. Li, W., & Liu, P. X. (2011). Adaptive tracking control of an MEMS gyroscope with H-infinity performance. Journal of Control Theory and Applications, 9(2), 237–243. https://doi.org/10.1007/s11768-011-9048-z.

    Article  MathSciNet  Google Scholar 

  18. Juan, W., & Fei, J. (2013). Adaptive fuzzy approach for non-linearity compensation in MEMS gyroscope. Transactions of the Institute of Measurement and Control, 35(8), 1008–1015. https://doi.org/10.1177/0142331212472224.

    Article  Google Scholar 

  19. Fei, J., Xin, M., & Juan, W. (2013). Adaptive fuzzy sliding mode control using adaptive sliding gain for MEMS gyroscope. Transactions of the Institute of Measurement and Control, 35(4), 551–558. https://doi.org/10.1177/0142331212455451.

    Article  Google Scholar 

  20. Wu, D., & Fei, J. (2016). Adaptive neural sliding control of MEMS gyroscope with robust feedback compensator. Transactions of the Institute of Measurement and Control, 38(4), 414–424. https://doi.org/10.1177/0142331215585879.

    Article  Google Scholar 

  21. Mehrnezhad, A., Suratgar, A., Khatami, S., Sobhiyeh, S. (2013). A mathematical dynamic model for static and dynamic behaviours of MEMS-based AC voltage reference source. In Proceedings of the 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran. https://doi.org/10.1109/IranianCEE.2013.6599714.

  22. Ranjbar, E., Mehrnezhad, A., Suratgar, A., Khatami, S. (2014). Adaptive control of MEMS-based AC voltage reference source. In Proceedings of the 22nd Iranian Conference on Electrical Engineering (ICEE) (pp. 1336–1341). Tehran. https://doi.org/10.1109/IranianCEE.2014.6999741.

  23. Ranjbar, E., Mehrnezhad, A., & Suratgar, A. A. (2017). Adaptive sliding mode control of MEMS AC voltage reference source. Journal of Control Science and Engineering. https://doi.org/10.1155/2017/9425190.

    Article  MathSciNet  MATH  Google Scholar 

  24. Farzanegan, B., Niafar, E., Ranjbar, E., & Suratgar, A. A. (2019). Two MRAC designs for the MEMS-based AC voltage reference source. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43, 773–784. https://doi.org/10.1007/s40998-019-00205-7.

    Article  Google Scholar 

  25. Ranjbar, E., Yaghoubi, M., & Suratgar, A. A. (2020). Adaptive sliding mode controller design for a tunable capacitor susceptible to unknown upper-bounded uncertainties and disturbance. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 327–346. https://doi.org/10.1007/s40998-019-00220-8.

    Article  Google Scholar 

  26. Ranjbar, E., Suratgar, A. A. (2013). Design of a quadratic linear tracking controller to minimize battery power consumption of a 2-DOF MEMS vibratory gyroscope. In Proceedings of the 3rd International Conference on Control, Instrumentation, and Automation (pp. 198–202). Tehran. https://doi.org/10.1109/ICCIAutom.2013.6912834.

  27. Ranjbar, E., Suratgar, A. (2014). Functionality and modeling of a 3-DOF triaxial MEMS vibratory gyroscope. In Proceedings of the 1st International Conference on MEMS and Microfabrication.

  28. Ranjbar, E., & Suratgar, A. A. (2020). Design of an adaptive sliding mode controller with a sliding mode Luenberger observer for the MEMS capacitive plates. SN Applied Sciences, 2, 351. https://doi.org/10.1007/s42452-020-2148-y.

    Article  Google Scholar 

  29. Castan̋er, L., Pons, J., Nadal-Guardia, R., Rodrıǵuez, A.(2001). Analysis of the extended operation range of electrostatic actuators by current-pulse drive. Sensors and Actuators A: Physical, 90(3), 181–190. https://doi.org/10.1016/S0924-4247(01)00525-8.

  30. Kärkkäinen, A. M. (2006). MEMS Based Voltage References. Ph.D. Thesis. Finland: VTT Technical Research Centre of Finland.

  31. Ranjbar, E., Suratgar, A. A. (2013). Compensation for cross-coupling error in a 2-DOF MEMS vibratory gyroscope via designing a state feedback controller. In Proceedings of the 3rd International Conference on Acoustics and Vibration (ISAV).

  32. Ranjbar, E., Shahbazi, M., Suratgar, A.(2014). Designing a state feedback controller to compensate for quadrature error in a 3-DOF MEMS vibratory gyroscope. In Proceedings of the 4th International Conference on Acoustics and Vibration (ISAV).

  33. Ranjbar, E., Suratgar, A. A. (2013). Fundamentals and detailed modeling of the 2-DOF MEMS vibratory gyroscope. In Proceedings of the 3rd International Conference on Acoustics and Vibration (ISAV).

  34. Kuttler, K. (2012). Linear Algebra: Theory and Applications. The Saylor Foundation.

  35. Brogan, W. L. (1991). Modern Control Theory (3rd ed.). Upper Saddle River: Prentice-Hall.

    MATH  Google Scholar 

  36. Khalil, H. (2015). Nonlinear Control. Boston: Pearson.

    MATH  Google Scholar 

  37. Slotine, J., & Li, W. (1991). Applied Nonlinear Control. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  38. Pugh, C. (2003). Real Mathematical Analysis. Undergraduate Texts in Mathematics. New York: Springer.

  39. Ioannou, P., & Sun, J. (1996). Robust Adaptive Control. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  40. Ranjbar, E., Suratgar, A. A., Kabganian, M. (2013). Design of an adaptive controller for a 2-DOF MEMS vibratory gyroscope to obtain perfect tracking and angular velocity estimation with noise, disturbance and parameter variation analysis. In the 3rd International Conference on Control, Instrumentation, and Automation (pp. 224–223). Tehran. https://doi.org/10.1109/ICCIAutom.2013.6912839.

  41. Fei, J. (ed.). (2012). Advanced Control Design of MEMS Vibratory Gyroscope. Nova Science Publishers.

  42. Ranjbar, E., Yaghubi, M., & Suratgar, A. A. (2020). Robust adaptive sliding mode control of a mems tunable capacitor based on dead-zone method. Automatica, 61(4), 587–601. https://doi.org/10.1080/00051144.2020.1806011.

    Article  Google Scholar 

  43. Moghaddam, A. S., Ranjbar, E., Suratgar, A. A., Farzanegan, B., Menhaj, M. B. (2020). Observer-based sliding mode control for MEMS-based AC voltage reference source. In Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE). Tabriz.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar, E., Yaghoubi, M. & Suratgar, A.A. An adaptive sliding mode controller design to cope with unmatched uncertainties and disturbance in a MEMS voltage reference source. Control Theory Technol. 19, 211–226 (2021). https://doi.org/10.1007/s11768-020-00025-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-020-00025-9

Keywords

Navigation