Skip to main content
Log in

Security control of positive semi-Markovian jump systems with actuator faults

  • Research article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Actuator faults usually cause security problem in practice. This paper is concerned with the security control of positive semi-Markovian jump systems with actuator faults. The considered systems are with mode transition-dependent sojourn-time distributions, which may also lead to actuator faults. First, the time-varying and bounded transition rate that satisfies the mode transition-dependent sojourn-time distribution is considered. Then, a stochastic co-positive Lyapunov function is constructed. Using matrix decomposition technique, a set of state-feedback controllers for positive semi-Markovian jump systems with actuator faults are designed in terms of linear programming. Under the designed controllers, stochastic stabilization of the systems with actuator faults are achieved and the security of the systems can be guaranteed. Furthermore, the proposed results are extended to positive semi-Markovian jump systems with interval and polytopic uncertainties. By virtue of a segmentation technique of the transition rates, a less conservative security control design is also proposed. Finally, numerical examples are provided to demonstrate the validity of the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Montestruque, L., & Antsaklis, P. (2004). Stability of model-based networked control systems with time-varying transmission times. IEEE Transactions on Automatic Control, 49(9), 1562–1572.

    Article  MathSciNet  MATH  Google Scholar 

  2. Wu, J., Karimi, H., & Shi, P. (2013). Network-based \({\rm H}_\infty\) output feedback control for uncertain stochastic systems. Information Sciences, 232, 397–410.

    Article  MathSciNet  MATH  Google Scholar 

  3. Luan, X., Liu, F., & Shi, P. (2010). Neural network based stochastic optimal control for nonlinear Markov jump systems. International Journal of Innovative Computing, Information and Control, 6(8), 3715–3723.

    Google Scholar 

  4. Li, L., Ugrinovskii, V., & Orsi, R. (2007). Decentralized robust control of uncertain Markov jump parameter systems via output feedback. Automatica, 43(11), 1932–1944.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ugrinovskii, V., & Pota, H. (2005). Decentralized control of power systems via robust control of uncertain Markov jump parameter systems. International Journal of Control, 78(9), 662–677.

    Article  MathSciNet  MATH  Google Scholar 

  6. Abdollahi, F., & Khorasani, K. (2011). A decentralized Markovian jump \({\rm H}_{\infty }\) control routing strategy for mobile multi-agent networked systems. IEEE Transactions on Control Systems Technology, 19(2), 269–283.

    Article  Google Scholar 

  7. Meskin, N., & Khorasani, K. (2009). Fault detection and isolation of discrete-time Markovian jump linear systems with application to a network of multi-agent systems having imperfect communication channels. Automatica, 45(9), 2032–2040.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, J., Zhao, X., Zhu, F., & Han, Z. (2016). \(L_1/\ell _1\)-gain analysis and synthesis of Markovian jump positive systems with time delay. ISA Transactions, 63, 93–102.

    Article  Google Scholar 

  9. Zhu, S., Han, Q., & Zhang, C. (2014). \(l_1\)-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: a linear programming approach. Automatica, 50(8), 2098–2107.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, D., Zhang, Q., & Du, B. (2018). \(L_1\) fuzzy observer design for nonlinear positive Markovian jump system. Nonlinear Analysis: Hybrid Systems, 27, 271–288.

    MathSciNet  MATH  Google Scholar 

  11. Qi, W., & Gao, X. (2015). \(L_1\) control for positive Markovian jump systems with time-varying delays and partly known transition rates. Circuits, Systems, and Signal Processing, 34(8), 2711–2726.

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y., Zhao, C., Lam, J., Cui, Y. K., & Kwok, K. W. (2019). Stability and \(\ell _1\)-gain analysis for positive 2-D Markov jump systems. International Journal of Systems Science, 50(11), 2077–2087.

    Article  MathSciNet  Google Scholar 

  13. Park, I., Kwon, N., & Park, P. (2018). A linear programming approach for stabilization of positive Markovian jump systems with a saturated single input. Nonlinear Analysis Hybrid Systems, 29, 322–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, J., Han, Z., & Zhu, F. (2014). Stochastic stability and stabilization of positive systems with Markovian jump parameters. Nonlinear Analysis: Hybrid Systems, 12, 147–155.

    MathSciNet  MATH  Google Scholar 

  15. Zhu, S., Han, Q., & Zhang, C. (2017). \(L_1\)-stochastic stability and \(L_1\)-gain performance of positive Markov jump linear systems with time-delays: Necessary and sufficient conditions. IEEE Transactions on Automatic Control, 62(7), 3634–3639.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, J., Raïssi, T., & Li, S. (2019). Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays. Nonlinear Dynamics, 97(2), 1495–1513.

    Article  MATH  Google Scholar 

  17. Ren, C., & He, S. (2020). Finite-time stabilization for positive Markovian jumping neural networks. Applied Mathematics and Computation, 365, 124631.

    Article  MathSciNet  MATH  Google Scholar 

  18. Limnios, N., Ouhbi, B., & Sadek, A. (2005). Empirical estimator of stationary distribution for semi-Markov processes. Communications in Statistics-Theory and Methods, 34(4), 987–995.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L. (2009). \({\rm H}_\infty\) control of a class of piecewise homogeneous Markov jump linear systems. In Proceedings of the 7th Asian Control Conference, Hong Kong, China (pp. 197–202).

  20. Shen, H., Wu, Z., & Park, J. (2015). Reliable mixed passive and filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. International Journal of Robust Nonlinear Control, 25(17), 3231–3251.

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, J., & Shi, Y. (2013). Stochastic stability and robust stabilization of semi-Markov jump linear systems. International Journal of Robust Nonlinear Control, 23(18), 2028–2043.

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, L., Leng, Y., & Colaneri, P. (2016). Stability and stabilization of discrete-time semi-Markov jump linear systems via semi-Markov kernel approach. IEEE Transactions on Automatic Control, 61(2), 503–508.

    MathSciNet  MATH  Google Scholar 

  23. Wang, B., & Zhu, Q. (2018). Stability analysis of semi-Markov switched stochastic systems. Automatica, 94, 72–80.

    Article  MathSciNet  MATH  Google Scholar 

  24. Schioler, H., Simonsen, M., & Leth, J. (2014). Stochastic stability of systems with semi-Markovian switching. Automatica, 50(11), 2961–2964.

    Article  MathSciNet  MATH  Google Scholar 

  25. Rajchakit, G., & Saravanakumar, R. (2018). Exponential stability of semi-Markovian jump generalized neural networks with interval time-varying delays. Neural Computing and Applications, 29(2), 483–492.

    Article  Google Scholar 

  26. Ouhbi, B., & Limnios, N. (2003). Nonparametric reliability estimation of semi-Markov processes. Journal of Statistical Planning and Inference, 109(1–2), 155–165.

    Article  MathSciNet  MATH  Google Scholar 

  27. De Saporta, B., & Costa, E. (2016). Approximate Kalman–Bucy filter for continuous-time semi-Markov jump linear systems. IEEE Transactions on Automatic Control, 61(8), 2035–2048.

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, L., & Shao, C. (2010). Exponential stabilisation for time-varying delay system with actuator faults: An average dwell time method. International Journal of Systems Science, 41(4), 435–445.

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, H., Shi, P., & Yao, D. (2017). Adaptive sliding-mode control of Markov jump nonlinear systems with actuator faults. IEEE Transactions on Automatic Control, 62(4), 1933–1939.

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, M., Cao, X., & Shi, P. (2013). Fuzzy-model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Transactions on Fuzzy Systems, 21(5), 789–799.

    Article  Google Scholar 

  31. Kaviarasan, B., Sakthivel, R., & Kwon, O. (2016). Robust fault-tolerant control for power systems against mixed actuator failures. Nonlinear Analysis: Hybrid Systems, 22, 249–261.

    MathSciNet  MATH  Google Scholar 

  32. Wang, H., Liu, P., Zhao, X., & Liu, X. (2019). Adaptive fuzzy finite-time control of nonlinear systems with actuator faults. IEEE Transactions on Cybernetics, 50(5), 1786–1797.

    Article  Google Scholar 

  33. Sakthivel, R., Selvi, S., Mathiyalagan, K., & Shi, P. (2015). Reliable mixed \({\rm H}_\infty\) and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures. IEEE Transactions on Cybernetics, 45(12), 2720–2731.

    Article  Google Scholar 

  34. Hussein, M., Ghommam, J., Ghodbane, A., Saad, M., & Nerguizian, V. (2019). Distributed active fault tolerant control design against actuator faults for multiple mobile robots. Control Theory and Technology, 17(4), 367–381.

    Article  MathSciNet  Google Scholar 

  35. Wei, W., Wen, C., Huang, J., & Zhou, J. (2020). Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults. Automatica, 111, 108667.

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, Z., & Shan, J. (2020). Fixed-time consensus for uncertain multi-agent systems with actuator faults. Journal of the Franklin Institute, 357(2), 1199–1220.

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, J., Shi, Y. (2011). Stochastic stability of semi-Markov jump linear systems: An LMI approach. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control, Orlando, FL. (pp. 4668–4673).

  38. Farina, L., & Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications. New York: Wiley.

    Book  MATH  Google Scholar 

  39. Kaczorek, T. (2002). Positive 1D and 2D Systems. London: Springer.

    Book  MATH  Google Scholar 

  40. Hom, R., & Johnson, C. (1991). Topics in Matrix Analysis. New York: Cambridge Press.

    Google Scholar 

  41. Boukas, E. (2005). Stochastic Switching Systems: Analysis and Design. Berlin: Springer.

    Google Scholar 

  42. Li, L., Qi, W., Chen, X., Kao, Y., Gao, X., & Wei, Y. (2018). Stability analysis and control synthesis for positive semi-Markov jump systems with time-varying delay. Applied Mathematics and Computation, 332, 363–375.

    Article  MathSciNet  MATH  Google Scholar 

  43. Ding, D., Han, Q., Xiang, Y., Ge, X., & Zhang, X. (2018). A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing, 275, 1674–1683.

    Article  Google Scholar 

  44. Liu, J., Yin, T., Cao, J., & Yue, D. (2020). Security control for T-S fuzzy systems with adaptive event-triggered mechanism and multiple cyber-attacks. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/TSMC.2019.2963143.

  45. Zhao, H., Niu, Y., & Jia, T. (2020). Security control of cyber-physical switched systems under Round-Robin protocol: Input-to-state stability in probability. Information Sciences, 508, 121–134.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Nos. 62073111, 61703132), the Fundamental Research Funds for the Provincial Universities of Zhejiang (No. GK209907299001-007), the Natural Science Foundation of Zhejiang Province, China (No. LY20F030008), the Foundation of Zhejiang Provincial Education Department of China (No. Y202044335), and the Graduate Scientific Research Foundation of Hangzhou Dianzi University (No. CXJJ2020051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yang, H., Zhang, S. et al. Security control of positive semi-Markovian jump systems with actuator faults. Control Theory Technol. 19, 197–210 (2021). https://doi.org/10.1007/s11768-021-00043-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00043-1

Keywords

Navigation