Skip to main content
Log in

Data-driven optimal switching and control of switched systems

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, optimal switching and control approaches are investigated for switched systems with infinite-horizon cost functions and unknown continuous-time subsystems. At first, for switched systems with autonomous subsystems, the optimal solution based on the finite-horizon HJB equation is proposed and a data-driven optimal switching algorithm is designed. Then, for the switched systems with subsystem inputs, a data-driven optimal control approach based on the finite-horizon HJB equation is proposed. The data-driven approaches approximate the optimal solutions online by means of the system state data instead of the subsystem models. Moreover, the convergence of the two approaches is analyzed. Finally, the validity of the two approaches is demonstrated by simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liberzon, D. (2003). Switching in systems and control. Basel: Birkhäuser.

    Book  Google Scholar 

  2. Sun, Z. (2006). Switched linear systems: Control and design. London: Springer.

    Google Scholar 

  3. Sun, Z. (2017). Recent advances on analysis and design of switched linear systems. Control Theory Technology, 15(3), 242–244.

    Article  Google Scholar 

  4. Xu, X., & Antsaklis, P.-J. (2004). Optimal control of switched systems based on parameterization of the switching instants. IEEE Transactions on Automatic Control, 49(1), 2–16.

    Article  MathSciNet  Google Scholar 

  5. Bengea, S. C., & Decarlo, R.-A. (2005). Optimal control of switching systems. Automatica, 41(1), 11–27.

    MathSciNet  MATH  Google Scholar 

  6. Zhu, F., & Antsaklis, P.-J. (2015). Optimal control of hybrid switched systems: A brief survey. Discrete Event Dynamic Systems, 25(3), 345–364.

    Article  MathSciNet  Google Scholar 

  7. Yathisha, L., & Patilkulkarni, S. (2018). LQR and LQG based optimal switching techniques for PSS and UPFC in power systems. Control Theory and Technology, 16(1), 25–37.

    Article  MathSciNet  Google Scholar 

  8. Vrabie, D., Pastravanu, O., Abu-Khalaf, M., & Lewis, F. L. (2009). Adaptive optimal control for continuous-time linear systems based on policy iteration. Automatica, 45(2), 477–484.

    Article  MathSciNet  Google Scholar 

  9. Jiang, Y., & Jiang, Z.-P. (2012). Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica, 48(10), 2699–2704.

    Article  MathSciNet  Google Scholar 

  10. Bian, T., Jiang, Y., & Jiang, Z.-P. (2014). Adaptive dynamic programming and optimal control of nonlinear nonaffine systems. Automatica, 50(10), 2624–2632.

    Article  MathSciNet  Google Scholar 

  11. Bian, T., & Jiang, Z.-P. (2016). Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design. Automatica, 71, 348–360.

    Article  MathSciNet  Google Scholar 

  12. Bian, T., & Jiang, Z.-P. (2016). Value iteration, adaptive dynamic programming, and optimal control of nonlinear systems. In IEEE 55th Conference on Decision and Control (pp. 3375–3380). Las Vegas, NV, USA.

  13. Heydari, A., & Balakrishnan, S. (2014). Optimal switching between autonomous subsystems. Journal of the Franklin Institute, 351(5), 2675–2690.

    Article  MathSciNet  Google Scholar 

  14. Heydari, A. (2015). Optimal scheduling for reference tracking or state regulation using reinforcement learning. Journal of the Franklin Institute, 352(8), 3285–3303.

    Article  MathSciNet  Google Scholar 

  15. Heydari, A. (2015). Feedback solution to optimal switching problems with switching cost. IEEE Transactions on Neural Networks and Learning Systems, 27(10), 2009–2019.

    Article  MathSciNet  Google Scholar 

  16. Heydari, A. (2017). Optimal switching with minimum dwell time constraint. Journal of the Franklin Institute, 354(11), 4498–4518.

    Article  MathSciNet  Google Scholar 

  17. Sardarmehni, T., & Heydari, A. (2017). Sub-optimal switching in antilock brake systems using approximate dynamic programming. IET Control Theory & Applications, 13(9), 1413–1424.

    Article  Google Scholar 

  18. Sardarmehni, T., & Heydari, A. (2016). Policy iteration for optimal switching with continuous-time dynamics. In International Joint Conference on Neural Networks (pp. 3536–3543). Vancouver, Canada.

  19. Sardarmehni, T., & Heydari, A. (2018). Sub-optimal scheduling in switched systems with continuous-time dynamics: A gradient descent approach. Neurocomputing, 285, 10–22.

    Article  Google Scholar 

  20. Sardarmehni, T., & Heydari, A. (2018). Suboptimal scheduling in switched systems with continuous-time dynamics: A least squares approach. IEEE Transactions on Neural Networks and Learning Systems, 29(6), 2167–2178.

    Article  MathSciNet  Google Scholar 

  21. Heydari, A., & Balakrishnan, S.-N. (2014). Optimal switching and control of nonlinear switching systems using approximate dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1106–1117.

    Article  Google Scholar 

  22. Qin, C., Zhang, H., Luo, Y., & Wang, B. (2014). Finite horizon optimal control of non-linear discrete-time switched systems using adaptive dynamic programming with epsilon-error bound. International Journal of Systems Science, 45(8), 1683–1693.

    Article  MathSciNet  Google Scholar 

  23. Heydari, A., & Balakrishnan, S.-N. (2015). Optimal switching between controlled subsystems with free mode sequence. Neurocomputing, 149, 1620–1630.

    Article  Google Scholar 

  24. Pang, B., & Jiang, Z.-P. (2021). Adaptive optimal control of linear periodic systems: An off-policy value iteration approach. IEEE Transactions on Automatic Control, 66(2), 888–894.

    Article  MathSciNet  Google Scholar 

  25. Heydari, A. (2020). Optimal impulsive control using adaptive dynamic programming and its application in spacecraft rendezvous. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3021037.

    Article  Google Scholar 

  26. Liu, D., Yu, W., Baldi, S., Cao, J., & Huang, W. (2020). A switching-based adaptive dynamic programming method to optimal traffic signaling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4160–4170.

    Article  Google Scholar 

  27. Pang, B., Bian, T., & Jiang, Z.-P. (2019). Adaptive dynamic programming for finite-horizon optimal control of linear time-varying discrete-time systems. Control Theory and Technology, 17(1), 73–84.

    Article  MathSciNet  Google Scholar 

  28. Lu, W., & Ferrari, S. (2013). An approximate dynamic programming approach for model-free control of switched systems. In IEEE 52nd Annual Conference Conference on Decision and Control (pp. 3837–3844). Florence, Italy.

  29. Lu, W., Zhu, P., & Ferrari, S. (2016). A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems. IEEE Transactions on Automatic Control, 61(10), 3203–3208.

    Article  MathSciNet  Google Scholar 

  30. Zhang, C., Gan, M., & Zhao, J. (2019). Data-driven optimal control of switched linear autonomous systems. International Journal of Systems Science, 50(6), 1275–1289.

    Article  MathSciNet  Google Scholar 

  31. Gan, M., Zhang, C., & Zhao, J. (2019). Data-driven optimal switching of switched systems. Journal of the Franklin Institute, 356(10), 5193–5221.

    Article  MathSciNet  Google Scholar 

  32. Sontag, E.-D. (1990). Mathematical control theory: Deterministic finite dimensional systems. New York: Springer.

    Book  Google Scholar 

  33. Powell, M.-J.-D. (1981). Approximation theory and methods. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 61673065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Gan, M. & Xue, C. Data-driven optimal switching and control of switched systems. Control Theory Technol. 19, 299–314 (2021). https://doi.org/10.1007/s11768-021-00054-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00054-y

Keywords

Navigation