Skip to main content
Log in

Optimal LQG control for discrete time-varying system with multiplicative noise and multiple state delays

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper is concerned with the optimal linear quadratic Gaussian (LQG) control problem for discrete time-varying system with multiplicative noise and multiple state delays. The main contributions are twofolds. First, in virtue of Pontryagin’s maximum principle, we solve the forward and backward stochastic difference equations (FBSDEs) and show the relationship between the state and the costate. Second, based on the solution to the FBSDEs and the coupled difference Riccati equations, the necessary and sufficient condition for the optimal problem is obtained. Meanwhile, an explicit analytical expression is given for the optimal LQG controller. Numerical examples are shown to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, P. H., & Lee, J. W. (1994). A model reference observer for time-delay control and its application to robot trajectory control. IFAC Proceedings Volumes, 27(14), 29–34.

    Article  Google Scholar 

  2. Youcef-Toumi, K., Sasage, Y., Ardini, J., & Huang, S. Y. (1992). The application of time delay control to an intelligent cruise control system. In: American Control Conference, Chicago (pp. 1743–1747).

  3. Anderson, R. J., & Spong, M. W. (1988). Bilateral control of teleoperators with time delay. In: IEEE Conference on Decision & Control, Austin (pp. 167–173).

  4. Wang, Y., Yan, F., Chen, J., Ju, F., & Chen, B. (2019). A new adaptive time-delay control scheme for cable-driven manipulators. IEEE Transactions on Industrial Informatics, 15(6), 3469–3481.

    Article  Google Scholar 

  5. Xu, J., & Zhang, H. (2017). Control for Itô stochastic systems with input delay. IEEE Transactions on Automatic Control, 62(1), 350–365.

    Article  MathSciNet  Google Scholar 

  6. Smith, O. J. M. (1959). A controller to overcome dead time. ISA Transactions, 6(2), 28–33.

    Google Scholar 

  7. Yue, D., & Han, Q. L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233–240.

    Article  MathSciNet  Google Scholar 

  8. Zhang, H., Xie, L., & Duan, G. (2007). \({\rm H}^\infty\) control of discrete-time systems with multiple input delays. IEEE Transactions on Automatic Control, 52(2), 271–283.

    Article  MathSciNet  Google Scholar 

  9. Lee, Y. S., Moon, Y. S., Kwon, W. H., & Park, P. G. (2004). Delay-dependent robust \({\rm H}^\infty\) control for uncertain systems with a state-delay. Automatica, 40(1), 65–72.

    Article  MathSciNet  Google Scholar 

  10. Wang, H. P., Shieh, L. S., Tsai, J. S. H., & Zhang, Y. P. (2008). Optimal digital controller and observer design for multiple time-delay transfer function matrices with multiple input-output time delays. International Journal of Systems Science, 39(5), 461–476.

    Article  MathSciNet  Google Scholar 

  11. Primbs, J. A., & Sung, C. H. (2009). Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise. IEEE Transactions on Automatic Control, 54(2), 221–230.

    Article  MathSciNet  Google Scholar 

  12. Qi, Q., & Zhang, H. (2017). Output feedback control and stabilization for multiplicative noise systems with intermittent observations. IEEE Transactions on Cybernetics, 48(7), 2128–2138.

    Article  Google Scholar 

  13. Rami, M. A., Chen, X., & Zhou, X. Y. (2002). Discrete-time Indefinite LQ control with state and control dependent noises. Journal of Global Optimization, 23(3), 245–265.

    Article  MathSciNet  Google Scholar 

  14. Phillis, Y. (1985). Controller design of systems with multiplicative noise. IEEE Transactions on Automatic Control, 30(10), 1017–1019.

    Article  MathSciNet  Google Scholar 

  15. Zhang, H., Li, L., Xu, J., & Fu, M. (2015). Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise. IEEE Transactions on Automatic Control, 60(10), 2599–2613.

    Article  MathSciNet  Google Scholar 

  16. Liang, X., Xu, J., & Zhang, H. (2017). Discrete-time LQG control with input delay and multiplicative noise. IEEE Transactions on Aerospace & Electronic Systems, 53(6), 3079–3090.

    Article  Google Scholar 

  17. Liang, X., & Xu, J. (2018). Control for networked control systems with remote and local controllers over unreliable communication channel. Automatica, 98, 86–94.

    Article  MathSciNet  Google Scholar 

  18. Liang, X., Xu, J., & Zhang, H. (2020). Optimal control and stabilization for networked control systems with asymmetric information. IEEE Transactions on Control of Network Systems, 7(3), 1355–1365. https://doi.org/10.1109/TCNS.2020.2976296.

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, L., Zhang, H., & Fu, M. (2017). Linear quadratic regulation for discrete-time systems with multiplicative noise and multiple input delays. Optimal Control Applications and Methods, 38(3), 295–316.

    Article  MathSciNet  Google Scholar 

  20. Yong, J., & Zhou, X. Y. (1999). Stochastic controls: Hamiltonian systems and HJB equations. IEEE Transactions on Automatic Control, 46(11), 1846–1846.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liang.

Appendices

Appendix A

With the stochastic maximum principle (4)–(6) to LQG control system (3) involving multiple state delays and multiplicative noise, we can obtain for \(k=N\),

$$\begin{aligned} 0&=\sum \limits _{i=0}^d\big (\mathcal {D}'(N){\mathcal {P}}_{N+1}^0\mathcal {C}_i(N)+\gamma \bar{\mathcal {D}}'(N){\mathcal {P}}_{N+1}^0\bar{\mathcal {C}}_i(N)\big )x_{N-i}\\&\quad +\big (\mathcal {D}'(N){\mathcal {P}}_{N+1}^0D(N)+\gamma \bar{\mathcal {D}}'(N){\mathcal {P}}_{N+1}^0\bar{\mathcal {D}}(N)+R_N\big )\\&\quad \times u_N+\mathcal {D}'(N){\mathcal {P}}_{N+1}^0{\bar{\mu }}_N+\bar{\mathcal {D}}'(N){\mathcal {P}}_{N+1}^0\tau . \end{aligned}$$

Using Eqs. (8) and (9), the optimal controller \(u_N\) is as

$$\begin{aligned} u_N=&-\varOmega _N^{-1}\sum \limits _{i=0}^dN_N^ix_{N-i}-\varOmega _N^{-1}\varSigma _N, \end{aligned}$$

where \(\varSigma _N=\mathcal {D}'(N){\mathcal {P}}_{N+1}^0{\bar{\mu }}_N+\bar{\mathcal {D}}'(N){\mathcal {P}}_{N+1}^0\tau\). From (4) and (5), we also have

$$\begin{aligned} \zeta _{N-1}&=\mathrm{E}\Bigg [(\mathcal {C}_N^0)'(N){\mathcal {P}}_{N+1}^0x_{N+1}|{\mathcal {F}}_{N-1}\Bigg ]+Q_Nx_N\\&=\mathrm{E}\Bigg [\Bigg (\sum \limits _{i=0}^d(\mathcal {C}_N^0)'(N){\mathcal {P}}_{N+1}^0\mathcal {C}_N^i(N)-(N_N^0)'\varOmega _N^{-1}N_N^i\Bigg )\\&\quad \times x_{N-i}- (N_N^0)'\varOmega _N^{-1}\mathcal {D}_N'(N){\mathcal {P}}_{N+1}^0\mu _N + (\mathcal {C}_N^0)'(N)\\&\quad \times {\mathcal {P}}_{N+1}^0\mu _N|{\mathcal {F}}_{N-1}\Bigg ]+Q_Nx_N. \end{aligned}$$

Substituting (7), \(\zeta _{N-1}\) yields

$$\begin{aligned} \zeta _{N-1}&=\sum \limits _{i=1}^d{\mathcal {P}}_N^ix_{N-i}+{\mathcal {P}}_N^0x_N+(\mathcal {C}_0'(N){\mathcal {P}}_{N+1}^0{\bar{\mu }}_N\\&\quad +\bar{\mathcal {C}}_0'(N){\mathcal {P}}_{N+1}^0\tau -(N_N^0)'\varOmega _N^{-1}\mathcal {D}'(N){\mathcal {P}}_{N+1}^0\\&\quad \times {\bar{\mu }}_N-(N_N^0)'\varOmega _N^{-1}\bar{\mathcal {D}}'(N){\mathcal {P}}_{N+1}^0\tau )\\&=\sum \limits _{j=0}^d{\mathcal {P}}_{N}^jx_{N-j}+\varPhi _N, \end{aligned}$$

where \(\varPhi _N\) satisfied (12) with the terminal values being zero.

Now, we have verified (11) for \(k=N\). Supposing that \(\zeta _{k-1}\) are as (11) for all \(k\geqslant n+1\), we will show that (11) also holds for \(k=n\). For \(k=n+1\), with (3) and (11), \(\zeta _n\) can be calculated as

$$\begin{aligned} \zeta _n&=\sum \limits _{j=0}^d{\mathcal {P}}_{n+1}^jx_{n+1-j}+\varPhi _{n+1}\nonumber \\&=\sum \limits _{j=1}^d{\mathcal {P}}_{n+1}^jx_{n+1-j}+{\mathcal {P}}_{n+1}^0\sum \limits _{i=0}^d\big (\mathcal {C}_n^i(n)x_{n-i}+\mathcal {D}(n)u_{n}\nonumber \\&\quad +\mu _{n}\big )+\varPhi _{n+1} . \end{aligned}$$
(22)

Inserting \(\zeta _n\) to (6), (6) will become

$$\begin{aligned} 0&=\mathrm{E}\Bigg [\sum \limits _{j=0}^d\big (\mathcal {D}_n'(n){\mathcal {P}}_{n+1}^{j+1} + \mathcal {D}_n'(n){\mathcal {P}}_{n+1}^0\mathcal {C}_n^j(n)\big )x_{n-j} + \mathcal {D}_n'(n)\\&\quad \times \!{\mathcal {P}}_{n+1}^0\mathcal {D}_n(n)u_n \!+\! \mathcal {D}_n'(n){\mathcal {P}}_{n+1}^0\mu _n \!+\! \mathcal {D}_n'(n)\varPhi _{n+1}|{\mathcal {F}}_{n-1}\Bigg ] \!+\!R_nu_n\\&=\sum \limits _{j=0}^d N_{n}^jx_{n-j}+ \varOmega _nu_n + \mathcal {D}'(n)\left( {\mathcal {P}}_{n+1}^0{\bar{\mu }}_n + \varPhi _{n+1}\right) \\&\quad + \bar{\mathcal {D}}'(n){\mathcal {P}}_{n+1}^0\tau . \end{aligned}$$

Thus, the optimal controller is given by

$$\begin{aligned} u_n=-\varOmega _n^{-1}\sum \limits _{j=0}^dN_{n}^jx_{n-j}-\varOmega _n^{-1}\varPhi _n. \end{aligned}$$
(23)

In virtue of equations (3), (5) and (23), \(\zeta _{n-1}\) yields that

$$\begin{aligned}&\zeta _{n-1}\\&\quad =\mathrm{E}\Bigg [ \sum \limits _{m=0}^{d-1} (\mathcal {C}_{n+m}^m)'(n + m)\zeta _{n+m} + (\mathcal {C}_{n+d}^d)'(n + d)\\&\qquad \times\Big (\sum \limits _{j=1}^d{\mathcal {P}}_{n+d+1}^j x_{n+d+1-j}+{\mathcal {P}}_{n+d+1}^0\Big (\sum \limits _{i=0}^d\mathcal {C}_{n+d}^i(n + d)x_{n+d-i}\\&\qquad +\mu _{n+d}+\mathcal {D}_{n+d}(n + d)u_{n+d}\Big )+\varPhi _{n+d+1}\Big )|{\mathcal {F}}_{n-1}\Bigg ]+Q_nx_n\\&\quad =\mathrm{E}\Bigg [\sum \limits _{m=0}^{d-1}(\mathcal {C}_{n+m}^m)'(n + m)\zeta _{n+m} + \sum \limits _{j=0}^d\big ((\mathcal {C}_{n+d}^d)'(n + d){\mathcal {P}}_{n+d+1}^{j+1}\\&\qquad +(\mathcal {C}_{n+d}^d)'(n + d){\mathcal {P}}_{n+d+1}^0\mathcal {C}_{n+d}^j(n + d)-(N_{n+d}^d)'\varOmega _{n+d}^{-1}\\&\qquad \times N_{n+d}^j\big )x_{n+d-j}-(N_{n+d}^d)'\varOmega _{n+d}^{-1}\varSigma _{n+d}+(\mathcal {C}_{n+d}^d)'(n + d)\\&\qquad \times ({\mathcal {P}}_{n+d+1}^0\mu _{n+d}+\varPhi _{n+d+1})|{\mathcal {F}}_{n-1}\Bigg ]+Q_nx_n \\&\quad =\mathrm{E}\Bigg [\sum \limits _{m=0}^{d-2}(\mathcal {C}_{n+m}^m)'(n + m)\zeta _{n+m}+\sum \limits _{j=0}^d\big ((\mathcal {C}_{n+d-1}^{d-1})'(n + d - 1)\\&\qquad \times {\mathcal {P}}_{n+d}^{j+1}+(\mathcal {C}_{n+d-1}^{d-1})'(n + d - 1){\mathcal {P}}_{n+d}^0\mathcal {C}_{n+d-1}^j(n + d - 1)\\&\qquad +(\mathcal {C}_{n+d}^d)'(n + d){\mathcal {P}}_{n+d+1}^{j+2}+(\mathcal {C}_{n+d}^d)'(n + d){\mathcal {P}}_{n+d+1}^0\\&\qquad \times \mathcal {C}_{n+d}^{j+1}(n + d)-(N_{n+d}^d)'\varOmega _{n+d}N_{n+d}^{j+1}+({\mathcal {P}}_{n+d}^d)'\\&\qquad \times \mathcal {C}_{n+d-1}^j(n + d - 1)\big )x_{n+d-1-j}+(N_{n+d-1}^{d-1})'u_{n+d-1}\\&\qquad - (N_{n+d}^d)'\varOmega _{n+d}^{-1}\varSigma _{n+d} + (\mathcal {C}_{n+d}^d)'(n + d)({\mathcal {P}}_{n+d+1}^0\mu _{n+d} \\&\qquad + \varPhi _{n+d+1})+(\mathcal {C}_{n+d-1}^{d-1})'(n + d - 1)({\mathcal {P}}_{n+d}^0g_{n+d-1}+\varPhi _{n+d})\\&\qquad +({\mathcal {P}}_{n+d}^{d})'\mu _{n+d-1}|{\mathcal {F}}_{n-1}\Bigg ]+Q_nx_n\\&\quad =\mathrm{E}\Bigg [\sum \limits _{m=0}^{d-3}(\mathcal {C}_{n+m}^m)'(n + m)\zeta _{n+m} + \sum \limits _{j=0}^d\sum \limits _{i=d-2}^d \big ((\mathcal {C}_{n+i}^i)'(n + i)\\&\qquad \times {\mathcal {P}}_{n+i+1}^0\mathcal {C}_{n+i}^{i+j-d+2}(n + i)+(\mathcal {C}_{n+i}^i)'(n + i){\mathcal {P}}_{n+i+1}^{i+j-d+3}\\&\qquad +({\mathcal {P}}_{n+i+1}^{i+1})'\mathcal {C}_{n+i}^{j+1}(n+i)-(N_{n+i}^i)'\varOmega _{n+i}^{-1}N_{n+i}^{i+j-d+2}\big )\\&\qquad \times x_{n+d-2-j}-\sum \limits _{i=d-1}^d \big ((N_{n+i}^i)'\varOmega _{n+i}^{-1}\varSigma _{n+i}+(\mathcal {C}_{n+i}^i)'(n + i)\\&\qquad \times ({\mathcal {P}}_{n+i+1}^0\mu _{n+i}+\varPhi _{n+i+1})+({\mathcal {P}}_{n+i+1}^{i+1})'\mu _{n+i}\big )|{\mathcal {F}}_{n-1}\Bigg ]\\&\qquad +Q_nx_n. \end{aligned}$$

Plugging (3) and (23) into the above equation for times d, we can calculate \(\zeta _{n-1}\) as follows:

$$\begin{aligned}&\zeta _{n-1}\\&\quad =\mathrm{E}\Bigg [\sum \limits _{j=0}^d\sum \limits _{i=0}^d \Bigg ((\mathcal {C}_{n+i}^i)'(n + i){\mathcal {P}}_{n+i+1}^0\mathcal {C}_{n+i}^{i+j}(n + i) \\&\qquad + (\mathcal {C}_{n+i}^i)'(n + i) {\mathcal {P}}_{n+i+1}^{i+j}+({\mathcal {P}}_{n+i+1}^{i+1})'\mathcal {C}_{n+i}^{j+1}(n+i)\\&\qquad -(N_{n+i}^i)'\varOmega _{n+i}^{-1}N_{n+i}^{i+j}\Bigg ) x_{n+1-j}+\sum \limits _{i=0}^d\Bigg ((-N_{n+i}^i)'\varOmega _{n+i}^{-1}\varSigma _{n+i}\\&\qquad +(\mathcal {C}_{n+i}^i)'(n+i) ({\mathcal {P}}_{n+i+1}^0\mu _{n+i}+\varPhi _{n+i+1})\\&\qquad +({\mathcal {P}}_{n+i+1}^{i+1})'\mu _{n+i}\Bigg )|{\mathcal {F}}_{n-1}\Bigg ]+Q_nx_n, \end{aligned}$$

where \({\mathcal {P}}_{n+i+1}^{i+j}=0\) for \(i+j>d\) from Remark 1, and then

$$\begin{aligned}&\zeta _{n-1}\\&\quad =\sum \limits _{j=0}^d\sum \limits _{i=0}^{d-j}\big (\mathcal {C}_i'(n + i){\mathcal {P}}_{n+i+1}^0\mathcal {C}_{i+j}(n + i)\\&\qquad +\gamma \bar{\mathcal {C}}_i'(n + i){\mathcal {P}}_{n+i+1}^0 \bar{\mathcal {C}}_{i+j}(n + i)+\mathcal {C}_i'(n + i){\mathcal {P}}_{n+i+1}^{i+j+1}\\&\qquad +({\mathcal {P}}_{n+i+1}^{i+1})'\mathcal {C}_{i+j}(n + i)-(N_{n+i}^i)'\varOmega _{n+i}^{-1}N_{n+i}^{i+j}\big )x_{n-j}\\&\qquad +\sum \limits _{i=0}^d\big ((-N_{n+i}^i)'\varOmega _{n+i}^{-1}\varSigma _{n+i}+\mathcal {C}_i'(n + i)({\mathcal {P}}_{n+i+1}^0{\bar{\mu }}_{n+i}\\&\qquad + \varPhi _{n+i+1}) + \bar{\mathcal {C}}_i'(n + i)({\mathcal {P}}_{n+i+1}^0\tau + ({\mathcal {P}}_{n+i+1}^{i+1})'{\bar{\mu }}_{n+i}\big )+Q_nx_n. \end{aligned}$$

After inserting (7), we can summarize that

$$\begin{aligned} \zeta _{n-1}=\sum \limits _{j=0}^d{\mathcal {P}}_{n}^jx_{n-j}+\varPhi _{n}. \end{aligned}$$

This completes the proof of the lemma.

Appendix B

(Necessity)   Suppose that there exists the unique \({\mathcal {F}}_{k-1}\)-measurable \(u_k\) to make the cost function (2) minimized. We will show that \(\varOmega _k, k=0,\dots ,N\) are positive definite by induction and the optimal controller can be designed as (13). Define

$$\begin{aligned} J(k)= \mathrm{E}\Bigg [\sum \limits _{i=k}^Nx_i'Q_ix_i+u_i'R_iu_i+x_{N+1}'{\mathcal {P}}_{N+1}^0x_{N+1}\Bigg ]. \end{aligned}$$

When \(k=N\), J(N) is presented as

$$\begin{aligned} J(N)&= u_N'\varOmega _Nu_N + 2u_N(\mathcal {D}(N){\mathcal {P}}_{N+1}^0{\bar{\mu }}_N + \bar{\mathcal {D}}(N){\mathcal {P}}_{N+1}^0\tau )\\&\quad + {\rm Tr}[{\mathcal {P}}_{N+1}^0Q_{\mu _N}], \end{aligned}$$

where \(x_N=0\) and \(x_{N-j}=0\) for \(j=0,\ldots ,d\) as the uniqueness of the optimal controller is unrelated with \(x_k\).

As J(N) can be expressed as a quadratic function of \(u_N\), and the performance index must be positive, it can be obviously know that \(\varOmega _N>0\), i.e., \(\varOmega _k\) is positive definite for \(k=N\). Assuming \(\varOmega _k>0\) for all \(k\geqslant n+1\), we will prove that \(\varOmega _n>0\). With (3), (5) and (6), for \(k\geqslant n+1\), we construct that

$$\begin{aligned}&\mathrm{E}\Bigg [x_k'\zeta _{k-1}-x_{k+1}'\zeta _k\Bigg ]\nonumber \\&\quad =\mathrm{E}\Bigg [x_k'\mathrm{E}[\sum \limits _{m=0}^d\mathcal {C}_{k+m}^m(k+m)\zeta _{k+m}|{\mathcal {F}}_{k-1}]+x_k'Q_kx_k\nonumber \\&\qquad -\Bigg(\sum \limits _{i=0}^d\mathcal {C}_k^i(k)x_{k-i}+\mathcal {D}_k(k)u_k+\mu _k\Bigg )'\zeta _k\Bigg ]\nonumber \\&\quad =\mathrm{E}\Bigg [x_k'Q_kx_k-u_k'\mathrm{E}[\mathcal {D}'(k)\zeta _k|{\mathcal {F}}_{k-1}]-\mu _k'\zeta _k\Bigg ]\nonumber \\&\quad =\mathrm{E}\Bigg [x_k'Q_kx_k+u_k'R_ku_k-\mu _k'\zeta _k\Bigg ]. \end{aligned}$$
(24)

To obtain the form of J(N), we add both sides of (24) from \(k=n+1\) to \(k=N\), we have

$$\begin{aligned} \mathrm{E}[x_{n+1}'\zeta _n-x_{N+1}'\zeta _N]= \sum \limits _{k=n+1}^N \mathrm{E}\big [x_k'Q_kx_k+u_k'R_ku_k-\mu _k'\zeta _k\big ]. \end{aligned}$$

Then,

$$\begin{aligned}&\mathrm{E}\Bigg [\sum \limits _{k=n+1}^N\Bigg (x_k'Q_kx_k+u_k'R_ku_k\Bigg )+x_{N+1}'{\mathcal {P}}_{N+1}^0x_{N+1}\Bigg ]\\&=\mathrm{E}\big [x_{n+1}'\zeta _n-\sum \limits _{k=n}^N\mu _k'\zeta _k\big ]. \end{aligned}$$

Compared with (2), it yields that

$$\begin{aligned} J(n) = \big [x_n'Q_nx_n+u_n'R_nu_n\big ]+\mathrm{E}\Big [x_{n+1}'\zeta _n + \sum \limits _{k=n+1}^{N} \mu _k'\zeta _k\Big ]. \end{aligned}$$
(25)

Setting \(x_n=0\) and \(x_{n-i}=0\), for \(i=0,\ldots ,d\) as the same as the condition \(k=N\), and plugging (11) into (25), we obtain

$$\begin{aligned} J(n)&=\mathrm{E}\Bigg [u_n'R_nu_n+u_n'D_n'(n)\zeta _n+\sum \limits _{k=n}^N\mu _k'\zeta _k\Bigg ]\\&= \mathrm{E}\big [u_n'R_nu_n+u_n'\mathcal {D}_n'(n)({\mathcal {P}}_{n+1}^0\mathcal {D}_n(n)u_n+\mu _n)\\&\quad +u_n'\mathcal {D}_n'(n)\varPhi _{n+1}+\sum \limits _{k=n}^N\mu _k'\zeta _k\big ]\\&=u_n'\varOmega _nu_n+u_n'\big (\mathcal {D}'(n)({\mathcal {P}}_{n+1}^0{\bar{\mu }}_n+\varPhi _{n+1})\\&\quad +\bar{\mathcal {D}}'(n){\mathcal {P}}_{n+1}^0\tau \big )+\sum \limits _{k=n+1}^N\mu _k'\zeta _k. \end{aligned}$$

Similarly to the case \(\varOmega _N>0\) above, we obviously get \(\varOmega _n>0\) for all \(k=0,\ldots , N\). This completes the proof of necessity.

(Sufficiency)   Suppose that \(\varOmega _k>0\) for \(k=0,\dots ,N\) is ture, we will show the existence of the unique \({\mathcal {F}}_{k-1}\)-measurable \(u_k\) to minimize (2). Make the definition:

$$\begin{aligned}&V(x_k)\\&\quad =\mathrm{E}\Bigg [x_k'{\mathcal {P}}_k^0x_k+2x_k'\sum \limits _{j=1}^{d}{\mathcal {P}}_k^jx_{k-j}\\&\qquad +\sum \limits _{j=1}^{d}\sum \limits _{i=1}^{d}\sum \limits _{l=0}^{d-1}x_{k-j}' \Bigg [\mathcal {C}_{j+l}'(k + l) {\mathcal {P}}_{k+l+1}^0\mathcal {C}_{i+l}(k + l)\\&\qquad +\gamma \bar{\mathcal {C}}_{j+l}'(k + l){\mathcal {P}}_{k+l+1}^0 \bar{\mathcal {C}}_{i+l}(k + l)+\mathcal {C}_{j+l}'(k + l){\mathcal {P}}_{k+l+1}^{i+l+1}\\&\qquad +({\mathcal {P}}_{k+l+1}^{j+l+1})' \mathcal {C}_{i+l}(k + l)-(N_{k+l}^{j+l})'\varOmega _{k+l}^{-1}N_{k+l}^{i+l}\Bigg ]x_{k-i}\\&\qquad +2x_k'\varPhi _k\Bigg ]. \end{aligned}$$

First, as \(k=k+1\), using the equivalent substitution \(l=l+1\), \(j=j-1\), and \(i=i-1\) in turn, the \(V(x_{k+1})\) can be calculated as

$$\begin{aligned}&V(x_{k+1})\\&\quad =\mathrm{E}\Bigg [x_k'\big ((\mathcal {C}_k^0)'(k){\mathcal {P}}_{k+1}^0\mathcal {C}_k^0(k)+(\mathcal {C}_k^0)'(k){\mathcal {P}}_{k+1}^1\\&\qquad +({\mathcal {P}}_{k+1}^1)' \mathcal {C}_k^0(k)\big )x_k+2x_k'\sum \limits _{j=1}^d\big ((\mathcal {C}_k^0)'(k){\mathcal {P}}_{k+1}^0\mathcal {C}_k^j(k)\\&\qquad +(\mathcal {C}_k^0)'(k) {\mathcal {P}}_{k+1}^{j+1}+({\mathcal {P}}_{k+1}^1)'\mathcal {C}_k^j(k)\big )x_{k-j}\\&\qquad +\sum \limits _{j=1}^d\sum \limits _{i=1}^dx_{k-i}' \big ((\mathcal {C}_k^i)'(k) {\mathcal {P}}_{k+1}^0\mathcal {C}_k^j(k)+(\mathcal {C}_k^i)'(k){\mathcal {P}}_{k+1}^{j+1} \\&\qquad +({\mathcal {P}}_{k+1}^{j+1})'\mathcal {C}_k^i(k)\big )x_{k-j}+2u_k'\sum \limits _{j=0}^dN_k^jx_{k-j}+u_k'(\varOmega _k - R)u_k\\&\qquad +\sum \limits _{j=0}^{d-1}\sum \limits _{i=0}^{d-1}\sum \limits _{l=1}^dx_{k-j}' [\mathcal {C}_{j+l}'(k + l){\mathcal {P}}_{k+l+1}^0\mathcal {C}_{i+l}(k + l)\\&\qquad + \gamma \bar{\mathcal {C}}_{j+l}'(k + l){\mathcal {P}}_{k+l+1}^0 \bar{\mathcal {C}}_{i+l}(k + l)+\mathcal {C}_{j+l}'(k + l){\mathcal {P}}_{k+l+1}^{i+l+1}\\&\qquad +({\mathcal {P}}_{k+l+1}^{j+l+1})'\mathcal {C}_{i+l}(k + l)-(N_{k+l}^{j+l})'\varOmega _{k+l}^{-1}N_{k+l}^{i+l}]x_{k-i}\\&\qquad +2\mu _k'\sum \limits _{j=0}^d{\mathcal {P}}_{k+1}^0\mathcal {C}_k^j(k)x_{k-j}+2\mu _k'{\mathcal {P}}_{k+1}^0\mathcal {D}_k(k)u_k+\mu _k'{\mathcal {P}}_{k+1}^0\mu _k \\&\qquad +\sum \limits _{j=0}^d\mu _k'{\mathcal {P}}_{k+1}^{j+1}x_{k-j}+2x_{k+1}'\varPhi _{k+1}\Bigg ]. \end{aligned}$$

Constructing the form \(V(x_k)-V(x_{k+1})\), we have

$$\begin{aligned}&V(x_k)-V(x_{k+1})\\&\quad =\mathrm{E}\Bigg [x_k'Q_kx_k+u_k'R_ku_k - \Bigg (u_k+\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\Bigg )'\varOmega _k\Bigg (u_k\\&\qquad +\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\Bigg )-2u_k'\varSigma _k+2x_k\varPhi _k-2\sum \limits _{j=0}^dx_{k-j}'\\&\qquad \times \Bigg ((\mathcal {C}_k^j)'(k)\Bigg ({\mathcal {P}}_{k+1}^0\mu _k+\varPhi _{k+1}\Bigg )+{\mathcal {P}}_{k+1}^{j+1}\mu _k\Bigg )-2\mu _k'\varPhi _{k+1}\\&\qquad -\mu _k'{\mathcal {P}}_{k+1}^0\mu _k\Bigg ]. \end{aligned}$$

Denote

$$\begin{aligned} \phi _k^i&=\big (\mathcal {C}_i'(k)-(N_k^i)'\varOmega _k^{-1}\mathcal {D}'(k)\big )({\mathcal {P}}_{k+1}^0{\bar{\mu }}_k+\varPhi _{k+1})\\&\quad +\big (\bar{\mathcal {C}}_i'(k)-(N_k^i)'\varOmega _k^{-1}\bar{\mathcal {D}}'(k)\big ){\mathcal {P}}_{k+1}^0\tau +({\mathcal {P}}_{k+1}^{i+1})'{\bar{\mu }}_k. \end{aligned}$$

We can obviously know that \(\varPhi _k=\sum \limits _{i=0}^d\phi _{k+i}^i\). Then,

$$\begin{aligned}&\mathrm{E}\Bigg [2x_k\varPhi _k - 2\sum \limits _{j=0}^dx_{k-j}'\big ((\mathcal {C}_k^j)'(k)({\mathcal {P}}_{k+1}^0\mu _k + \varPhi _{k+1})\nonumber \\& + {\mathcal {P}}_{k+1}^{j+1}\mu _k\Bigg ]\nonumber \\&\quad =2\sum \limits _{j=0}^dx_{k-j}'\phi _k^j-2\sum \limits _{j=0}^d\big (\phi _k^j+(N_k^j)'\varOmega _k^{-1}\varSigma _k\big )\nonumber \\&\quad =-2\sum \limits _{j=0}^dx_{k-j}'(N_k^j)'\varOmega _k^{-1}\varSigma _k. \end{aligned}$$
(26)

By virtue of (26), the following equation becomes

$$\begin{aligned}&V(x_k)-V(x_{k+1})\\&\quad =\mathrm{E}\Bigg [x_k'Q_kx_k+u_k'R_ku_k - \big (u_k+\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\big )'\varOmega _k\big (u_k\\&\qquad +\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\big )-2u_k'\varSigma _k-2\sum \limits _{j=0}^dx_{k-j}'(N_k^j)'\varOmega _k^{-1}\varSigma _k\\&\qquad -2\mu _k'\varPhi _{k+1}-\mu _k'{\mathcal {P}}_{k+1}^0\mu _k\Bigg ]\\&\quad =\mathrm{E}\big [x_k'Q_kx_k+u_k'R_ku_k - \big (u_k+\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\big )'\varOmega _k\big (u_k\\&\qquad +\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\big )-2u_k'\varSigma _k-2\sum \limits _{j=0}^dx_{k-j}'(N_k^j)'\varOmega _k^{-1}\varSigma _k\\&\qquad -\varSigma _k'\varOmega _k^{-1}\varSigma _k+\varSigma _k'\varOmega _k^{-1}\varSigma _k-2\mu _k'\varPhi _{k+1}-\mu _k'{\mathcal {P}}_{k+1}^0\mu _k\big ]\\&\quad =x_k'Q_kx_k + u_k'R_ku_k - \big (u_k + \varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}+\varOmega _k^{-1}\varSigma _k\big )'\\&\qquad \times \varOmega _k\big (u_k+\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}+\varOmega _k^{-1}\varSigma _k\big ) + \varSigma _k'\varOmega _k^{-1}\varSigma _k\\&\qquad -2{\bar{\mu }}_k'\varPhi _{k+1}-{\rm Tr}[{\mathcal {P}}_{k+1}^0Q_{\mu _k}]. \end{aligned}$$

Adding from \(k=0\) to \(k=N\), the following equation is obtained:

$$\begin{aligned}&V(x_0)-V(x_{N+1})\\&\quad =\sum \limits _{k=0}^{N}\Bigg [x_k'Q_kx_k + u_k'R_ku_k - \Bigg (u_k + \varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}\\&\qquad + \varOmega _k^{-1} \varSigma _k\Bigg )'\varOmega _k\Bigg (u_k + \varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j} + \varOmega _k^{-1}\varSigma _k\Bigg )\\&\qquad + \varSigma _k'\varOmega _k^{-1} \varSigma _k-2{\bar{\mu }}_k'\varPhi _{k+1}-{\rm Tr}[{\mathcal {P}}_{k+1}^0Q_{\mu _k}]\Bigg ]. \end{aligned}$$

Then, the cost function (2) becomes

$$\begin{aligned} J_N&=V(x_0)+\sum \limits _{k=0}^N\Bigg [\Bigg (u_k+\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}+\varOmega _k^{-1}\varSigma _k\Bigg )'\\&\quad \times \varOmega _k\Bigg (u_k+\varOmega _k^{-1}\sum \limits _{j=0}^dN_k^jx_{k-j}+\varOmega _k^{-1}\varSigma _k\Bigg )\\&\quad -\varSigma _k'\varOmega _k^{-1} \varSigma _k+2{\bar{\mu }}_k'\varPhi _{k+1}+{\rm Tr}[{\mathcal {P}}_{k+1}^0Q_{\mu _k}]\Bigg ]. \end{aligned}$$

As \(\varOmega _k>0\), the unique optimal controller is

$$\begin{aligned} u_k^*=-\varOmega _k^{-1}\sum \limits _{j=0}^dN_{k}^jx_{k-j}-\varOmega _k^{-1}\varSigma _k, \end{aligned}$$

which minimized the cost function (2), and the optimal cost is

$$\begin{aligned} J_N^*=V(x_0) + \sum \limits _{k=0}^{N}\Bigg (2{\bar{\mu }}_k'\varPhi _{k+1} - \varSigma _k'\varOmega _k^{-1}\varSigma _k+ {\rm Tr}[{\mathcal {P}}_{k+1}^0Q_{g_k}]\Bigg ). \end{aligned}$$

Now, the proof of Theorem 1 is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, Q., Liang, X. et al. Optimal LQG control for discrete time-varying system with multiplicative noise and multiple state delays. Control Theory Technol. 19, 328–338 (2021). https://doi.org/10.1007/s11768-021-00053-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00053-z

Keywords

Navigation