Skip to main content
Log in

Data-driven disturbance observer-based control: an active disturbance rejection approach

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, a data-driven method for disturbance estimation and rejection is presented. The proposed approach is divided into two stages: an inner stabilization loop, to set the desired reference model, together with an outer loop for disturbance estimation and compensation. Inspired by the active disturbance rejection control framework, the exogenous and endogenous disturbances are lumped into a total disturbance signal. This signal is estimated using an on-line algorithm based on a data-driven predictor scheme, whose parameters are chosen to satisfy high robustness-performance criteria. The above process is presented as a novel enhancement to design a disturbance observer, which constitutes the main contribution of the paper. In addition, the control strategy is completely presented in discrete time, avoiding the use of discretization methods for its digital implementation. As a case study, the voltage control of a DC-DC synchronous buck converter affected by disturbances in the input voltage and the load is considered. Finally, experimental results that validate the proposed strategy and some comparisons with the classical disturbance observer-based control are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han, J. (1995). Extended state observer for a class of uncertain plants. Control Decision, 10(1), 85–88 (in Chinese).

    Google Scholar 

  2. Han, J. (1998). Auto disturbances rejection controller and its applications. Control Decision, 13(1), 19–23 (in Chinese).

    Google Scholar 

  3. Han, J. (2009). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.

    Article  Google Scholar 

  4. Huang, Y., & Xue, W. (2014). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53(4), 963–976.

    Article  MathSciNet  Google Scholar 

  5. Chen, W. H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-observer-based control and related methods – an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095.

    Article  Google Scholar 

  6. Gao, Z. (2006). Active disturbance rejection control: a paradigm shift in feedback control system design. In Proceedings of the American Control Conference. Minneapolis, MN, USA.

  7. Radke, A., & Gao, Z. (2006). A survey of state and disturbance observers for practitioners. In Proceedings of the American Control Conference. Minneapolis, MN, USA.

  8. Guo, B.-Z., & Zhao, Z.-L. (2016). Active Disturbance Rejection Control for Nonlinear Systems: An Introduction. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  9. Rojas-Cubides, H., Cortés-Romero, J., Coral-Enriquez, H., & Rojas-Cubides, H. (2019). Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable Twin-Rotor aerodynamical system. Control Engineering Practice, 88, 1–15.

    Article  Google Scholar 

  10. Arcos-Legarda, J., Cortes-Romero, J., & Tovar, A. (2016). Active disturbance rejection control based on generalized proportional integral observer to control a bipedal robot with five degrees of freedom. In Proceedings of the American Control Conference (pp. 3928–3933). Boston, MA, USA.

  11. Hostetter, G. H., & Meditch, J. S. (1973). On the generalization of observers to systems with unmeasurable, unknown inputs. Automatica, 9(6), 721–724.

    Article  MATH  Google Scholar 

  12. Khalil, H. K. (2017). High-gain Observers in Nonlinear Feedback Control. Society for Industrial and Applied Mathematics (SIAM).

  13. Sariyildiz, E., Oboe, R., & Ohnishi, K. (2020). Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics, 67(3), 2042–2053.

    Article  Google Scholar 

  14. Chen, X., Zhai, G., & Fukuda, T. (2004). An approximate inverse system for nonminimum-phase systems and its application to disturbance observer. Systems & Control Letters, 52(3–4), 193–207.

    Article  MathSciNet  MATH  Google Scholar 

  15. Zheng, M., Lyu, X., Liang, X., & Zhang, F. (2021). A generalized design method for learning-based disturbance observer. IEEE/ASME Transactions on Mechatronics, 26(1), 45 – 54.

    Google Scholar 

  16. Bertoluzzo, M., Buja, G. S., & Stampacchia, E. (2004). Performance analysis of a high-bandwidth torque disturbance compensator. IEEE/ASME Transactions on Mechatronics, 9(4), 653–660.

    Article  Google Scholar 

  17. Park, G, Joo, Y., Lee, C., & Shim, H. (2015). On robust stability of disturbance observer for sampled-data systems under fast sampling: An almost necessary and sufficient condition. In Proceedings of the IEEE Conference on Decision and Control (pp. 7536–7541). Osaka, Japan.

  18. Kempf, C. J., & Kobayashi, S. (1999). Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology, 7(5), 513–526.

    Article  Google Scholar 

  19. Na, J., Costa-Castelló, R., Griñó, R., & Ren, X. (2012). Discrete-time repetitive controller for time-delay systems with disturbance observer. Asian Journal of Control, 14(5), 1340–1354.

    Article  MathSciNet  MATH  Google Scholar 

  20. Kwon, S. J., & Chung, W. K. (2003). A discrete-time design and analysis of perturbation observer for motion control applications. IEEE Transactions on Control Systems Technology, 11(3), 399–407.

    Article  Google Scholar 

  21. Kim, W., Chen, X., Lee, Y., Chung, C. C., & Tomizuka, M. (2018). Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances. Mechanical Systems and Signal Processing, 104, 436–448.

    Article  Google Scholar 

  22. Lin, S. Y., Yen, J. Y., Chen, M. S., Chang, S. H., & Kao, C. Y. (2017). An Adaptive Unknown Periodic Input Observer for Discrete-Time LTI SISO Systems. IEEE Transactions on Automatic Control, 62(8), 4073–4079.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, W., Pang, C. K., & Du, C. (2017). Disturbance observer-based multirate control for rejecting periodic disturbances to the Nyquist frequency and beyond. Automatica, 82, 49–58.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tanaskovic, M., Fagiano, L., Novara, C., & Morari, M. (2017). Data-driven control of nonlinear systems: An on-line direct approach. Automatica, 75, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  25. She, J.-H., Fang, M., Ohyama, Y., Hashimoto, H., & Min, W. (2008). Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Transactions on Industrial Electronics, 55(1), 380–389.

    Article  Google Scholar 

  26. Cortes-Romero, J., Arcos-Legarda, J., Ramos, G.A. (2015). An active disturbance rejection approach based on signal processing. In Proceedings of the 54th IEEE Conference on Decision and Control (CDC) (pp. 7530–7535). Osaka, Japan.

  27. She, J.-H., Xin, X., & Pan, Y. (2010). Equivalent-input-disturbance approach analysis and application to disturbance rejection in dual-stage feed drive control system. IEEE/ASME Transactions on Mechatronics, 16(2), 330–340.

    Article  Google Scholar 

  28. Kim, K.-S., Rew, K.-H., & Kim, S. (2010). Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Transactions on Automatic Control, 55(8), 1905–1911.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun, J., & Li, S. (2017). Disturbance observer based iterative learning control method for a class of systems subject to mismatched disturbances. Transactions of the Institute of Measurement and Control, 39(11), 1749–1760.

    Article  Google Scholar 

  30. Yu, S., & Tomizuka, M. (2009). Performance enhancement of iterative learning control system using disturbance observer. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (pp. 987–992). Singapore.

  31. Chen, C.-T. (1995). Analog and Digital Control System Design: Transfer-function, State-space, and Agebraic Methods. Oxford: Oxford University Press Inc.

    MATH  Google Scholar 

  32. Chen, S., Xue, W., & Huang, Y. (2020). On active disturbance rejection control for nonlinear systems with multiple uncertainties and nonlinear measurement. International Journal of Robust and Nonlinear Control, 30(8), 3411–3435.

    Article  MathSciNet  Google Scholar 

  33. Li, S., Yang, J., Chen, W. H., & Chen, X. (2012). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 59(12), 4792–4802.

    Article  Google Scholar 

  34. Sira-Ramírez, H. (2018). From flatness, GPI observers, GPI control and flat filters to observer-based ADRC. Control Theory and Technology, 16(4), 249–260.

    Article  MathSciNet  Google Scholar 

  35. Yang, H., Zhang, Y., Liang, J., Liu, J., Zhang, N., & Walker, P. D. (2018). Robust deadbeat predictive power control with a discrete-time disturbance observer for PWM rectifiers under unbalanced grid conditions. IEEE Transactions on Power Electronics, 34(1), 287–300.

    Article  Google Scholar 

  36. Erickson, R. W., Maksimović, D. (2001). Fundamentals of Power Electronics. 2nd ed. Boston: Springer.

  37. Wang, J., Li, S., Yang, J., Bin, W., & Li, Q. (2015). Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances. IET Control Theory and Applications, 9(4), 579–586.

    Article  MathSciNet  Google Scholar 

  38. Figueres, E., Garcerá, G., Benavent, J. M., Pascual, M., & Martínez, J. A. (2006). Adaptive two-loop voltage-mode control of DC-DC switching converters. IEEE Transactions on Industrial Electronics, 53(1), 239–253.

    Article  Google Scholar 

  39. Zhang, C., Wang, J., Li, S., Bin, W., & Qian, C. (2015). Robust control for PWM-based DC-DC buck power converters with uncertainty via sampled-data output feedback. IEEE Transactions on Power Electronics, 30(1), 504–515.

    Article  Google Scholar 

  40. Jelali, M. (2013). Control Performance Management in Industrial Automation: Assessment Diagnosis and Improvement of Control Loop Performance.  1st ed. London: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey Rojas-Cubides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Cubides, H., Cortés-Romero, J. & Arcos-Legarda, J. Data-driven disturbance observer-based control: an active disturbance rejection approach. Control Theory Technol. 19, 80–93 (2021). https://doi.org/10.1007/s11768-021-00039-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00039-x

Keywords

Navigation