Skip to main content
Log in

Constrained nonlinear MPC for accelerated tracking piece-wise references and its applications to thermal systems

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, we propose a model predictive control (MPC) strategy for accelerated offset-free tracking piece-wise constant reference signals of nonlinear systems subject to state and control constraints. Some special contractive constraints on tracking errors and terminal constraints are embedded into the tracking nonlinear MPC formulation. Then, recursive feasibility and closed-loop convergence of the tracking MPC are guaranteed in the presence of piece-wise references and constraints by deriving some sufficient conditions. Moreover, the local optimality of the tracking MPC is achieved for unreachable output reference signals. By comparing to traditional tracking MPC, the simulation experiment of a thermal system is used to demonstrate the acceleration ability and the effectiveness of the tracking MPC scheme proposed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rawlings, J. B., Mayne, D. Q., & Diehl, M. M. (2014). Model predictive control: recent developments and future promise. Automatica, 50(12), 2967–2986.

  2. Rawlings, J. B. (2017). Model predictive control: theory, computation, and design. Nob Hill Publishing.

  3. Maree, J. P., & Imsland, L. (2016). Combined economic and regulatory predictive control. Automatica, 69, 342–347.

    Article  MathSciNet  Google Scholar 

  4. Morari, M., & Maeder, U. (2012). Nonlinear offset-free model predictive control. Automatica, 48(9), 2059–2067.

    Article  MathSciNet  Google Scholar 

  5. Wang, R., Manchester, I. R., & Bao, J. (2017). Distributed economic MPC with separable control contraction metrics. IEEE Control Systems Letters, 1(1), 104–109.

    Article  MathSciNet  Google Scholar 

  6. Ellis, M., Durand, H., & Christofides, P. D. (2014). A tutorial review of economic model predictive control methods. Journal of Process Control, 24(8), 1156–1178.

    Article  Google Scholar 

  7. He, D., Shi, Y., Li, H., & Du, H. (2019). Multi-objective predictive cruise control for connected vehicle systems on urban conditions with InPA-SQP algorithm. Optimal Control Applications & Methods, 40(3), 479–498.

    Article  MathSciNet  Google Scholar 

  8. Rao, C. V., & Rawlings, J. B. (1999). Steady states and constraints in model predictive control. AIChE Journal, 45(6), 1266–1278.

    Article  Google Scholar 

  9. Gilbert, E., & Kolmanovsky, I. (2002). Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor. Automatica, 38(12), 2063–2073.

    Article  MathSciNet  Google Scholar 

  10. Angeli, D., & Mosca, E. (1999). Command governors for constrained nonlinear systems. IEEE Transactions on Automatic Control, 44(4), 816–820.

    Article  MathSciNet  Google Scholar 

  11. Garone, E., Cairan, S. D., & Kolmanovsky, I. (2016). Reference and command governors for systems with constraints: a survey on theory and applications. Automatica, 75(1), 306–328.

    MathSciNet  MATH  Google Scholar 

  12. Simon, D., Lofber, J., & Glad, T. (2014). Reference tracking MPC using dynamic terminal set transformation. IEEE Transactions on Automatic Control, 59(10), 2790–2795.

    Article  MathSciNet  Google Scholar 

  13. Chisci, L., & Zappa, G. (2003). Dual mode predictive tracking of piecewise constant references for constrained linear systems. International Journal of Control, 76(1), 61–72.

    Article  MathSciNet  Google Scholar 

  14. Wada, N. (2015). Model predictive tracking control for constrained linear systems using Integrator Resets. IEEE Transactions on Automatic Control, 60(11), 3113–3118.

    Article  MathSciNet  Google Scholar 

  15. Magni, L., & Scattolini, R. (2005). On the solution of the tracking problem for non-linear systems with MPC. International Journal of Systems Science, 36(8), 477–484.

    Article  MathSciNet  Google Scholar 

  16. Magni, L. (2002). On robust tracking with non-linear model predictive control. International Journal of Control, 75(6), 399–407.

    Article  MathSciNet  Google Scholar 

  17. Kohler, J., Muller, M. A., & Allgower, F. (2019). Nonlinear reference tracking: an economic model predictive control perspective. IEEE Transactions on Automatic Control, 64, 254–269.

    Article  MathSciNet  Google Scholar 

  18. Limon, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2008). MPC for tracking piecewise constant references for constrained linear systems. Automatica, 44(9), 2382–2387.

    Article  MathSciNet  Google Scholar 

  19. Ferramosca, A., Limon, D., Alvarado, I., Alamo, T., & Camacho, E. F. (2009). MPC for tracking with optimal closed-loop performance. Automatica, 45(8), 1975–1978.

    Article  MathSciNet  Google Scholar 

  20. Limon, D., Ferramosca, A., Alvarado, I., & Alamo, T. (2018). Nonlinear MPC for tracking piece-wise constant reference signals. IEEE Transactions on Automatic Control, 63(11), 3735–3750.

    Article  MathSciNet  Google Scholar 

  21. Limon, D., Alamo, T., Munoz de la Pena, D., Zeilinger, M. N., Jones, C., & Pereira, M. (2012). MPC for tracking periodic reference signals. IFAC Proceedings Volumes, 45(17), 490–495.

    Article  Google Scholar 

  22. Fagiano, L., & Teel, A. R. (2013). Generalized terminal state constraint for model predictive control. Automatica, 49(9), 2622–2631.

    Article  MathSciNet  Google Scholar 

  23. Ferramosca, A., Limon, D., & Camacho, E. F. (2014). Economic MPC for a changing economic criterion for linear systems. IEEE Transactions on Automatic Control, 59(10), 2657–2667.

    Article  MathSciNet  Google Scholar 

  24. He, D., Sun, J., & Yu, L. (2016). Economic MPC with a contractive constraint for nonlinear systems. International Journal of Robust and Nonlinear Control, 26(18), 4072–4087.

    Article  MathSciNet  Google Scholar 

  25. Magni, L., Scattolini, R., & Tanelli, M. (2008). Switched model predictive control for performance enhancement. International Journal of Control, 81(12), 1859–1869.

    Article  MathSciNet  Google Scholar 

  26. Himmel, A., Sager, S., & Sundmacher, K. (2020). Time-minimal set point transition for nonlinear SISO systems under different constraints. Automatica, 114, 1–10.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng He.

Additional information

This work was supported by the National Natural Science Foundation of China (61773345) and the Zhejiang Provincial Major Projects Foundation of China (2020C03056).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, D., Wang, Q., Han, P. et al. Constrained nonlinear MPC for accelerated tracking piece-wise references and its applications to thermal systems. Control Theory Technol. 20, 69–79 (2022). https://doi.org/10.1007/s11768-022-00078-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00078-y

Keywords

Navigation