Skip to main content
Log in

Adaptive Kalman filter for MEMS IMU data fusion using enhanced covariance scaling

  • Research article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

MEMS (micro-electro-mechanical-system) IMU (inertial measurement unit) sensors are characteristically noisy and this presents a serious problem to their effective use. The Kalman filter assumes zero-mean Gaussian process and measurement noise variables, and then recursively computes optimal state estimates. However, establishing the exact noise statistics is a non-trivial task. Additionally, this noise often varies widely in operation. Addressing this challenge is the focus of adaptive Kalman filtering techniques. In the covariance scaling method, the process and measurement noise covariance matrices Q and R are uniformly scaled by a scalar-quantity attenuating window. This study proposes a new approach where individual elements of Q and R are scaled element-wise to ensure more granular adaptation of noise components and hence improve accuracy. In addition, the scaling is performed over a smoothly decreasing window to balance aggressiveness of response and stability in steady state. Experimental results show that the root mean square errors for both pith and roll axes are significantly reduced compared to the conventional noise adaptation method, albeit at a slightly higher computational cost. Specifically, the root mean square pitch errors are 1.1\(^\circ\) under acceleration and 2.1\(^\circ\) under rotation, which are significantly less than the corresponding errors of the adaptive complementary filter and conventional covariance scaling-based adaptive Kalman filter tested under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vidal, A. R., Rebecq, H., Horstschaefer, T., & Scaramuzza, D. (2018). Ultimate SLAM? Combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robotics and Automation Letters, 3(2), 994–1001.

    Article  Google Scholar 

  2. Randeniya, D. I., Sarkar, S., & Gunaratne, M. (2010). Vision-IMU integration using a slow-frame-rate monocular vision system in an actual roadway setting. IEEE Transactions on Intelligent Transportation Systems, 11(2), 256–266.

    Article  Google Scholar 

  3. Ates, S., Haarman, C. J., & Stienen, A. H. (2017). SCRIPT passive orthosis: design of interactive hand and wrist exoskeleton for rehabilitation at home after stroke. Autonomous Robots, 41(3), 711–723.

    Article  Google Scholar 

  4. Tupysev, V. A., Stepanov, O. A., Loparev, A. V., & Litvinenko, Y. A. (2009). Guaranteed estimation in the problems of navigation information processing. In 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St Petersburg, Russia, pp. 1672–1677.

  5. Mehra, R. (1972). Approaches to adaptive filtering. IEEE Transactions on Automatic Control, 17(5), 693–698.

    Article  MathSciNet  Google Scholar 

  6. Tupysev, V., Kruglova, N., & Motorin, A. (2017). Suboptimal algorithms for identification of navigation sensor errors described by Markov process. Gyroscopy and Navigation, 8(1), 58–62.

    Article  Google Scholar 

  7. Yan, J., Yuan, D., Xing, X., & Jia, Q. (2008). Kalman filtering parameter optimization techniques based on genetic algorithm. In 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, pp. 1717–1720. 

  8. Liu, Z., Guo, W., Tang, Z., & Chen, Y. (2015). Multi-sensor data fusion using a relevance vector machine based on an ant colony for gearbox fault detection. Sensors, 15(9), 21857–21875.

    Article  Google Scholar 

  9. Vargas-Meléndez, L., Boada, B. L., Boada, M. L., Gauchía, A., & Díaz, V. (2016). A sensor fusion method based on an integrated neural network and Kalman filter for vehicle roll angle estimation. Sensors, 16(9), 1400.

    Article  Google Scholar 

  10. Al Bitar, N., Gavrilov, A., & Khalaf, W. (2020). Artificial intelligence based methods for accuracy improvement of integrated navigation systems during GNSS signal outages: An analytical overview. Gyroscopy and Navigation, 11, 41–58.

    Article  Google Scholar 

  11. Wang, J., Stewart, M., & Tsakiri, M. (1999). Online stochastic modelling for INS/GPS integration. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999), Nashville, TN, USA, pp. 1887–1896.

  12. Mohamed, A., & Schwarz, K. (1999). Adaptive Kalman filtering for INS/GPS. Journal of Geodesy, 73(4), 193–203.

    Article  Google Scholar 

  13. Busse, F. D., How, J. P., & Simpson, J. (2003). Demonstration of adaptive extended Kalman filter for low-earth-orbit formation estimation using CDGPS. NAVIGATION, Journal of the Institute of Navigation, 50(2), 79–94.

    Google Scholar 

  14. Li, X. R., & Jilkov, V. P. (2005). Survey of maneuvering target tracking—Part V: Multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 41(4), 1255–1321.

    Article  Google Scholar 

  15. Huang, Y., Zhang, Y., Wu, Z., Li, N., & Chambers, J. (2017). A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices. IEEE Transactions on Automatic Control, 63(2), 594–601.

    Article  MathSciNet  Google Scholar 

  16. Hu, C., Hu, X., & Hong, Y. (2019). Distributed adaptive Kalman filter based on variational Bayesian technique. Control Theory and Technology, 17(1), 37–47.

    Article  MathSciNet  Google Scholar 

  17. Sage, A. P. & Husa, G. W. (1969). Algorithms for sequential adaptive estimation of prior statistics. In 1969 IEEE Symposium on Adaptive Processes (8th) Decision and Control, University Park, PA, USA, pp. 61.

  18. Narasimhappa, M., Rangababu, P., Sabat, S. L., & Nayak, J. (2012). A modified sage-husa adaptive Kalman filter for denoising fiber optic gyroscope signal. In 2012 Annual IEEE India Conference (INDICON), Kochi, India, pp. 1266–1271.

  19. Xia, Q., Rao, M., Ying, Y., & Shen, X. (1994). Adaptive fading Kalman filter with an application. Automatica, 30(8), 1333–1338.

    Article  MathSciNet  Google Scholar 

  20. Jwo, D.-J., & Wang, S.-H. (2007). Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sensors Journal, 7(5), 778–789.

    Article  Google Scholar 

  21. Zhang, A., Shuida, B., Fei, G., & Wenhao, B. (2019). A novel strong tracking cubature Kalman filter and its application in maneuvering target tracking. Chinese Journal of Aeronautics, 32(11), 2489–2502.

    Article  Google Scholar 

  22. Liu, Y., Fan, X., Lv, C., Wu, J., Li, L., & Ding, D. (2018). An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles. Mechanical Systems and Signal Processing, 100, 605–616.

    Article  Google Scholar 

  23. Ding, W., Wang, J., Rizos, C., & Kinlyside, D. (2007). Improving adaptive Kalman estimation in GPS/INS integration. The Journal of Navigation, 60(3), 517.

    Article  Google Scholar 

  24. Almagbile, A., Wang, J., & Ding, W. (2010). Evaluating the performances of adaptive Kalman filter methods in GPS/INS integration. Journal of Global Positioning Systems, 9(1), 33–40.

    Article  Google Scholar 

  25. Wang, J. (1999). Stochastic modeling for real-time kinematic GPS/GLONASS positioning. Navigation, 46(4), 297–305.

    Article  Google Scholar 

  26. InvenSense. (2016). Technical documentation for MPU-9250. https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf. Accessed 12 Feb 2019.

  27. Schneider, R., & Georgakis, C. (2013). How to not make the extended Kalman filter fail. Industrial & Engineering Chemistry Research, 52(9), 3354–3362.

    Article  Google Scholar 

  28. Boyd, S., & Xiao, L. (2005). Least-squares covariance matrix adjustment. SIAM Journal on Matrix Analysis and Applications, 27(2), 532–546.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuseini Mumuni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mumuni, F., Mumuni, A. Adaptive Kalman filter for MEMS IMU data fusion using enhanced covariance scaling. Control Theory Technol. 19, 365–374 (2021). https://doi.org/10.1007/s11768-021-00058-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00058-8

Keywords

Navigation