Skip to main content
Log in

Adaptive robust simultaneous stabilization of multiple \({\varvec{n}}\)-degree-of-freedom robot systems

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 07 February 2022

This article has been updated

Abstract

In this paper, the adaptive robust simultaneous stabilization problem of uncertain multiple n-degree-of-freedom (n-DOF) robot systems is studied using the Hamiltonian function method, and the corresponding adaptive \(L_2\) controller is designed. First, we investigate the adaptive simultaneous stabilization problem of uncertain multiple n-DOF robot systems without external disturbance. Namely, the single uncertain n-DOF robot system is transformed into an equivalent Hamiltonian form using the unified partial derivative operator (UP-DO) and potential energy shaping method, and then a high dimensional Hamiltonian system for multiple uncertain robot systems is obtained by applying augmented dimension technology, and a single output feedback controller is designed to ensure the simultaneous stabilization for the higher dimensional Hamiltonian system. On this basis, we further study the adaptive robust simultaneous stabilization control problem for the uncertain multiple n-DOF robot systems with external disturbances, and design an adaptive robust simultaneous stabilization controller. Finally, the simulation results show that the adaptive robust simultaneous stabilization controller designed in this paper is very effective in stabilizing multi-robot systems at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Change history

References

  1. Guo, K., Pan, Y., Zheng, D., et al. (2020). Composite learning control of robotic systems: a least squares modulated approach. Automatica, 111, 108612.

    Article  MathSciNet  Google Scholar 

  2. Sheng, Z., Sun, Z., Vahidreza, M., & Sharma, N. (2021). Switched control of an \(N\)-degree-of-freedom input delayed wearable robotic system. Automatica, 125, 109455.

    Article  MathSciNet  Google Scholar 

  3. Wang, H. (2015). Adaptive visual tracking for robotic systems without image-space velocity measurement. Automatica, 55, 294–301.

    Article  MathSciNet  Google Scholar 

  4. Lyu, S., & Cheah, C. (2020). Data-driven learning for robot control with unknown Jacobian. Automatica, 120, 109120.

    Article  MathSciNet  Google Scholar 

  5. Meng, J., & Yang, G. (2003). Robust adaptive control of robot manipulators using generalized fuzzy neural networks. IEEE Transactions on Industrial Electronics, 50(3), 620–628.

    Article  Google Scholar 

  6. Zhou, Y., Hu, H., Liu, Y., Lin, S., & Ding, Z. (2018). A distributed approach to robust control of multi-robot systems. Automatica, 98, 1–13.

    Article  MathSciNet  Google Scholar 

  7. Alireza, I., & Saeed, K. (2020). Robust adaptive control of robot manipulators using Bernstein polynomials as universal approximator. International Journal of Robust and Nonlinear Control, 30(7), 2719–2735.

    Article  MathSciNet  Google Scholar 

  8. Nguyen-Tuong, D., & Peters, J. (2011). Model learning for robot control: a survey. Cognitive Processing, Springer, 12(4), 319–340.

    Article  Google Scholar 

  9. Feng, Z., Hu, G., & Sun, Y. (2020). An overview of collaborative robotic manipulation in multi-robot systems. Annual Reviews in Control, 49, 113–127.

    Article  MathSciNet  Google Scholar 

  10. Blondel, V. (1994). Simultaneous Stabilization of Linear Systems. New York: Springer.

    Book  Google Scholar 

  11. Howitt, G., & Luus, R. (1991). Simultaneous stabilization of linear single-input systems by linear state feedback control. International Journal of Control, 54(4), 1015–1030.

    Article  MathSciNet  Google Scholar 

  12. Cai, X., Han, Z., & Zhang, W. (2009). Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters. Automatica, 35(2), 206–209.

    MathSciNet  Google Scholar 

  13. Cai, X., Hu, H., & Lv, G. (2012). Simultaneous \({\rm H}_\infty \) stabilization for a set of nonlinear systems. Acta Automatica Sinica, 38(3), 473–481.

    MathSciNet  Google Scholar 

  14. Dastaviz, A., & Binazadeh, T. (2019). Simultaneous stabilization of a collection of uncertain discrete-time systems with time-varying state-delay via discrete-time sliding mode control. Journal Vibration and Control, 25(16), 2261–2273.

    Article  MathSciNet  Google Scholar 

  15. Fu, B., Li, S., Wang, X., & Wang, L. (2019). Output feedback based simultaneous stabilization of two Port-controlled Hamiltonian systems with disturbances. Journal of the Franklin Institude, 356(15), 8154–8166.

    Article  MathSciNet  Google Scholar 

  16. Wang, Y., Feng, G., & Cheng, D. (2007). Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica, 43(3), 403–415.

    Article  MathSciNet  Google Scholar 

  17. Wang, Y., & Ge, S. (2008). Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Transactions on Control Systems Technology, 16(2), 202–213.

  18. Sun, L., Wang, Y., & Yang, R. (2011). \(L_2\) disturbance attenuation for a class of time-delay Hamiltonian systems. Journal of Systems Science and Complexity, 24(4), 672–682.

    Article  MathSciNet  Google Scholar 

  19. Yang, R., & Wang, Y. (2013). Finite-time stability analysis and \({\rm H}_\infty \) control for a class of nonlinear time-delay Hamiltonian systems. Automatica, 49(2), 390–401.

    Article  MathSciNet  Google Scholar 

  20. Chen, L., Min, Y., & Hu, W. (2013). An energy-based method for location of power system oscillation source. IEEE Transactions on Power Systems, 28(2), 828–836.

    Article  Google Scholar 

  21. Yang, R., Zhang, G., & Sun, L. (2020). Finite-time robust simultaneous stabilization of a set of nonlinear time-delay systems. Journal of Robust and Nonlinear Control, 30(5), 1733–1753.

    Article  MathSciNet  Google Scholar 

  22. Wang, Y. (2007). Generalized Hamiltonian control system theory - implementation, control and application. Beijing: Science Press.

    Google Scholar 

  23. Ge, S., Lee, T., & Harris, C. (1998). Adaptive neural network control of robotic manipulators. London: World Scientific.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, R. Adaptive robust simultaneous stabilization of multiple \({\varvec{n}}\)-degree-of-freedom robot systems. Control Theory Technol. 20, 80–94 (2022). https://doi.org/10.1007/s11768-021-00076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00076-6

Keywords

Navigation