Skip to main content
Log in

Quantum-enhanced reinforcement learning for control: a preliminary study

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Reinforcement learning is one of the fastest growing areas in machine learning, and has obtained great achievements in biomedicine, Internet of Things (IoT), logistics, robotic control, etc. However, there are still many challenges for engineering applications, such as how to speed up the learning process, how to balance the trade-off between exploration and exploitation. Quantum technology, which can solve complex problems faster than classical methods, especially in supercomputers, provides us a new paradigm to overcome these challenges in reinforcement learning. In this paper, a quantum-enhanced reinforcement learning is pictured for optimal control. In this algorithm, the states and actions of reinforcement learning are quantized by quantum technology. And then, a probability amplification method, which can effectively avoid the trade-off between exploration and exploitation via quantized technology, is presented. Finally, the optimal control policy is learnt during the process of reinforcement learning. The performance of this quantized algorithm is demonstrated in both MountainCar reinforcement learning environment and CartPole reinforcement learning environment—one kind of classical control reinforcement learning environment in the OpenAI Gym. The preliminary study results validate that, compared with Q-learning, this quantized reinforcement learning method has better control performance without considering the trade-off between exploration and exploitation. The learning performance of this new algorithm is stable with different learning rates from 0.01 to 0.10, which means it is promising to be employed in unknown dynamics systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hansong, X., Liu, X., Wei, Yu., Griffith, D., & Golmie, N. (2020). Reinforcement learning-based control and networking co-design for industrial internet of things. IEEE Journal on Selected Areas in Communications, 38(5), 885–898.

    Article  Google Scholar 

  2. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354–359.

    Article  Google Scholar 

  3. Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., & Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782): 350–354.

    Article  Google Scholar 

  4. Wainberg, M., Merico, D., Delong, A., & Frey, B. J. (2018). Deep learning in biomedicine. Nature Biotechnology, 36(9), 829–838.

    Article  Google Scholar 

  5. Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications of deep learning and reinforcement learning to biological data. IEEE Transactions on Neural Networks and Learning Systems, 29(6), 2063–2079.

    Article  MathSciNet  Google Scholar 

  6. Chang, M., Kaushik, S., Weinberg, S. M., Griffiths, T., & Levine, S. (2020). Decentralized reinforcement learning: Global decision-making via local economic transactions. In International Conference on Machine Learning, pp. 1437–1447. PMLR.

  7. Yazhou, H., Wang, W., Liu, H., & Liu, L. (2019). Reinforcement learning tracking control for robotic manipulator with kernel-based dynamic model. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3570–3578.

    MathSciNet  Google Scholar 

  8. Peng, Z., Luo, R., Hu, J., Shi, K., Nguang, S. K., & Ghosh, B. K. (2021). Optimal tracking control of nonlinear multiagent systems using internal reinforce Q-learning. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3055761.

    Article  Google Scholar 

  9. Peng, Z., Zhao, Y., Hu, J., Luo, R., Ghosh, B. K., & Nguang, S. K. (2021). Input-output data-based output antisynchronization control of multi-agent systems using reinforcement learning approach. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2021.3050768.

    Article  Google Scholar 

  10. Peng, Z., Zhao, Y., Hu, J., & Ghosh, B. K. (2019). Data-driven optimal tracking control of discrete-time multi-agent systems with two-stage policy iteration algorithm. Information Sciences, 481, 189–202.

    Article  MathSciNet  Google Scholar 

  11. Bianchi, R. A. C., Ribeiro, C. H. C., & Costa, A. H. R. (2004). Heuristically accelerated Q-learning: a new approach to speed up reinforcement learning. In Brazilian Symposium on Artificial Intelligence, pp. 245–254. Sao Luis, Brazil.

  12. Celiberto Jr, L. A., Matsuura, J. P., Màntaras, Ramón López D., & Bianchi, R. A. C. (2010). Using transfer learning to speed-up reinforcement learning: a cased-based approach. In 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, pp. 55–60. Sao Luis, Brazil.

  13. Stooke, A., & Abbeel, P. (2018). Accelerated methods for deep reinforcement learning. arXiv:1803.02811.

  14. Garcia, J., & Shafie, D. (2020). Teaching a humanoid robot to walk faster through safe reinforcement learning. Engineering Applications of Artificial Intelligence, 88, 103360.1–103360.10.

    Google Scholar 

  15. Saggio, V., Asenbeck, B. E., Hamann, A., Strömberg, T., Schiansky, P., Dunjko, V., et al. (2021). Experimental quantum speed-up in reinforcement learning agents. Nature, 591(7849), 229–233.

    Article  Google Scholar 

  16. Tokic, M. (2010). Adaptive ε-greedy exploration in reinforcement learning based on value diferences. In Annual Conference on Artificial Intelligence, pp. 203–210. Karlsruhe, Germany.

  17. Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., & Abbeel, P. (2018). Overcoming exploration in reinforcement learning with demonstrations. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6292–6299. Brisbane, Australia.

  18. Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., & Levine, S. (2018). Meta-reinforcement learning of structured exploration strategies. In: S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc.

  19. Fujimoto, S., Meger, D., & Precup, D. (2019). Off-policy deep reinforcement learning without exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR.

  20. Dong, D., Chen, C., Li, H., & Tarn, T-J. (2008). Quantum reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5), 1207–1220.

    Article  Google Scholar 

  21. Paris, M. G. A. (2009). Quantum estimation for quantum technology. International Journal of Quantum Information, 7(supp01), 125–137.

    Article  Google Scholar 

  22. Shor, P. W. (1994). Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium On Foundations Of Computer Science, pp. 124–134. Santa Fe, NM, USA.

  23. Ekert, A., & Jozsa, R. (1996). Quantum computation and Shor’s factoring algorithm. Reviews of Modern Physics, 68(3), 733.

    Article  MathSciNet  Google Scholar 

  24. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. Philadelphia, PA, USA.

  25. Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2), 325.

    Article  Google Scholar 

  26. Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C. S., Sherwood, M. H., & Chuang, I. L. (2001). Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414(6866), 883–887.

    Article  Google Scholar 

  27. Jones, J. A., Mosca, M., & Hansen, R. H. (1998). Implementation of a quantum search algorithm on a quantum computer. Nature, 393(6683), 344–346.

    Article  Google Scholar 

  28. Dong, D., Chen, C., Chu, J., & Tarn, T.-J. (2010). Robust quantum-inspired reinforcement learning for robot navigation. IEEE/ASME Transactions on Mechatronics, 17(1), 86–97.

    Article  Google Scholar 

  29. Lamata, L. (2017). Basic protocols in quantum reinforcement learning with superconducting circuits. Scientific Reports, 7(1), 1–10.

    Article  Google Scholar 

  30. Li, J.-A., Dong, D., Wei, Z., Ying Liu, Yu., Pan, F. N., & Zhang, X. (2020). Quantum reinforcement learning during human decision-making. Nature Human Behaviour, 4(3), 294–307.

    Article  Google Scholar 

  31. Ravishankar, N. R., & Vijayakumar, M. V. (2017). Reinforcement learning algorithms: survey and classification. Indian Journal of Science and Technology, 10(1), 1–8.

    Article  Google Scholar 

  32. Zhang, Y., & Ni, Q. (2020). Recent advances in quantum machine learning. Quantum Engineering, 2(1), e34.

    Google Scholar 

  33. Chen, C. L., Dong, D. Y., & Chen, Z. H. (2006). Quantum computation for action selection using reinforcement learning. International Journal of Quantum Information, 4(6), 1071–1083.

    Article  Google Scholar 

  34. Chuang, I. L., Gershenfeld, N., & Kubinec, M. (1998). Experimental implementation of fast quantum searching. Physical Review Letters, 80(15), 3408–3411.

    Article  Google Scholar 

  35. Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  36. Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters, 79(2), 325–327.

    Article  Google Scholar 

  37. Boyer, M., Brassard, G., Høyer, P., & Tapp, A. (1996). Tight bounds on quantum searching. Fortschritte Der Physik, 46.

  38. Sutton, R., & Barto, A. (2018). Reinforcement Learning: An Introduction. Cambridge: MIT Press.

    MATH  Google Scholar 

  39. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba., W. (2016). OpenAI gym. arXiv:1606.01540.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Tang, F., Chen, J. et al. Quantum-enhanced reinforcement learning for control: a preliminary study. Control Theory Technol. 19, 455–464 (2021). https://doi.org/10.1007/s11768-021-00063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00063-x

Keywords

Navigation