Skip to main content
Log in

System identification with binary-valued observations under both denial-of-service attacks and data tampering attacks: defense scheme and its optimality

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, we investigate the defense problem against the joint attacks of denial-of-service attacks and data tampering attacks in the framework of system identification with binary-valued observations. By estimating the key parameters of the joint attack and compensating them in the identification algorithm, a compensation-oriented defense scheme is proposed. Then the identification algorithm of system parameter is designed and is further proved to be consistent. The asymptotic normality of the algorithm is obtained, and on this basis, we propose the optimal defense scheme. Furthermore, the implementation of the optimal defense scheme is discussed. Finally, a simulation example is presented to verify the effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, Y., Qiu, M., Tsai, C. W., Hassan, M. M., & Alamri, A. (2017). Health-CPS: Healthcare cyber-physical system assisted by cloud and big data. IEEE Systems Journal, 11(1), 88–95.

    Article  Google Scholar 

  2. Lv, C., Hu, X., Sangiovanni-Vincentelli, A., Li, Y., Martinez, C. M., & Cao, D. (2019). Driving-style-based codesign optimization of an automated electric vehicle: A cyber-physical system approach. IEEE Transactions on Industrial Electronics, 66(4), 2965–2975.

    Article  Google Scholar 

  3. Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2017). A survey on smart grid cyber-physical system testbeds. IEEE Communications Surveys & Tutorials, 19(1), 446–464.

  4. Karnouskos, S. (2011). Stuxnet worm impact on industrial cyber-physical system security. In the 37th Annual Conference of the IEEE Industrial Electronics Society (pp. 4490–4494), Melbourne, Australia.

  5. Wang, E. K., Ye, Y., Xu, X., Yiu, S. M., Hui, L. C. K., & Chow, K. P. (2010). Security issues and challenges for cyber physical system. In IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing (pp. 733–738), Washington, DC, USA.

  6. Gao, Y., Wang, L., Ren, W., Xie, F., Mo, X., Luo, X., et al. (2020). Reinforcement learning-based detection method for malware behavior in industrial control systems. Chinese Journal of Engineering, 42(4), 455–462.

    Google Scholar 

  7. Chen, J., Huang, B., Ding, F., & Gu, Y. (2018). Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica, 94, 194–204.

    Article  MathSciNet  Google Scholar 

  8. Cao, H. Y., Zhu, P. D., Lu, X. C., & Gurtov, A. (2013). A layered encryption mechanism for networked critical infrastructures. IEEE Network, 27(1), 12–18.

    Article  Google Scholar 

  9. Saxena, N., & Grijalva, S. (2018). Efficient signature scheme for delivering authentic control commands in the smart grid. IEEE Transactions on Smart Grid, 9(5), 4323–4334.

    Article  Google Scholar 

  10. Kumar, P., Braeken, A., Gurtov, A., Iinatti, J., & Ha, P. H. (2017). Anonymous secure framework in connected smart home environments. IEEE Transactions on Information Forensics and Security, 12(4), 968–979.

    Article  Google Scholar 

  11. Zhang, Y. C., Wang, L. F., Sun, W. Q., Green, R. C., II., & Alam, M. (2011). Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Transactions on Smart Grid, 2(4), 796–808.

    Article  Google Scholar 

  12. Shi, D., Guo, Z., Johansson, K. H., & Shi, L. (2018). Causality countermeasures for anomaly detection in cyber-physical systems. IEEE Transactions on Automatic Control, 63(2), 386–401.

    Article  MathSciNet  Google Scholar 

  13. Qi, S., Zhang, K. W., & Shi, Y. (2020). Resilient model predictive control of cyber-physical systems under DoS attacks. IEEE Transactions on Industrial Informatics, 16(7), 4920–4927.

    Article  Google Scholar 

  14. Lai, S. Y., Chen, B., Li, T. X., & Yu, L. (2019). Packet-based state feedback control under DoS attacks in cyber-physical systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(8), 1421–1425.

    Article  Google Scholar 

  15. Xu, Y., Fang, M., Wu, Z., Pan, Y., Chadli, M., & Huang, T. (2020). Input-based event-triggering consensus of multiagent systems under denial-of-service attacks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(4), 1455–1464.

    Article  Google Scholar 

  16. Yu, L., Sun, X., & Sui, T. (2019). False-data injection attack in electricity generation system subject to actuator saturation: Analysis and design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(8), 1712–1719.

    Article  Google Scholar 

  17. Yang, Q., Yang, J., Yu, W., An, D., Zhang, N., & Zhao, W. (2014). On false data-injection attacks against power system state estimation: Modeling and countermeasures. IEEE Transactions on Parallel and Distributed Systems, 25(3), 717–729.

    Article  Google Scholar 

  18. Miao, F., Pajic, M., & Pappas, G. J. (2013). Stochastic game approach for replay attack detection. In the 52nd IEEE Conference on Decision and Control (pp. 1854–1859), Florence, Italy.

  19. Guo, J., Diao, J. D. (2020). Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations. Science China Information Sciences, 63, 112201:1–112201:12.

  20. Diao, J. D., Guo, J., & Sun, C. Y. (2018). Event-triggered identification of FIR systems with binary-valued output observations. Automatica, 98, 95–102.

    Article  MathSciNet  Google Scholar 

  21. Tan, S., Guo, J., Zhao, Y., & Zhang, J. F. (2021). Adaptive control with saturation-constrainted observations for drag-free satellites—a set-valued identification approach. Science China Information Sciences. https://doi.org/10.1007/s11432-020-3145-0.

    Article  MathSciNet  Google Scholar 

  22. Wang, L. Y., Yin, G. G., Zhang, J. F., & Zhao, Y. L. (2010). System Identification with Quantized Observations. Boston, MA: Birkhäuser.

    Book  Google Scholar 

  23. Guo, J., Wang, L. Y., Yin, G. G., Zhao, Y. L., & Zhang, J. F. (2010). Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs. Automatica, 57, 113–122.

    Article  MathSciNet  Google Scholar 

  24. Athreya, K. B., & Lahiri, S. N. (2006). Measure Theory and Probability Theory. New York: Springer.

    MATH  Google Scholar 

  25. Chow, Y., & Teicher, H. (1997). Probability Theory: Independence, Interchangeability, Martingales. New York: Springer.

    Book  Google Scholar 

  26. Guo, J., Wang, X. B., Xue, W. C., & Zhao, Y. L. (2020). System identification with binary-valued observations under data tampering attacks. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2020.3029325

  27. Muresan, M. (2009). A Concrete Approach to Classical Analysis. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2018YFA0703801), the National Natural Science Foundation of China (62173030, 62033010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Wang, X., Zhang, Y. et al. System identification with binary-valued observations under both denial-of-service attacks and data tampering attacks: defense scheme and its optimality. Control Theory Technol. 20, 114–126 (2022). https://doi.org/10.1007/s11768-021-00074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00074-8

Keywords

Navigation