Skip to main content
Log in

Optimal energy consuming planning for a home-based microgrid with mobility constraint of electric vehicles and tractors

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This research deals with the energy management problem to minimize the cost of non-renewable energy for a small-scale microgrid with electric vehicles (EV) and electric tractors (ET). The EVs and ETs function as batteries in the power system, while they often have to leave it for their mobility and agricultural work. Each State of Charge (SoC), which is the charge rate of the battery from 0 to 1, and the operating time of ETs are optimized under the assumption that the required electrical energy, the arrival and departure time of EVs, and the working time of ETs are given by users, but they include uncertainties. In this paper, we deal with these uncertainties by constraints for robust energy planning and expected optimization based on scenarios, and show that the scheduling of the SoC assuming the worst case and the optimal home-based power consumption planning that considers the cost of each scenario corresponding to each variation can be obtained. Our proposed method is formulated as a mixed-integer linear programming (MILP), and numerical simulations show that the optimal cooperative operation among multiple houses can be obtained and its global optimal or sub-optimal solution can be quickly obtained by using CPLEX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hatziargyriou, N., Asano, H., Iravani, R., & Marnay, C. (2007). Microgrids. IEEE Power and Energy Magazine, 5(4), 78–94. https://doi.org/10.1109/MPAE.2007.376583

    Article  Google Scholar 

  2. Parisio, A., Rikos, E., Kyntäjä, T., Elo, J., & HenrikJohansson, K. (2014). A model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology 22(5), 1813–1827. https://doi.org/10.1109/TCST.2013.2295737

    Article  Google Scholar 

  3. Parisio, A., Wiezorek, C., & Glielmo, L. (2015). An MPC-based energy management system for multiple residential microgrids. In IEEE international conference on automation science and engineering (pp. 7–14). Gothenburg, Sweden. https://doi.org/10.1109/CoASE.2015.7294033

  4. Parisio, A., Wiezorek, C., Kyntäjä, T., Elo, J., Strunz, K., & Henrik Johansson, K. (2017). Cooperative MPC-based energy management for networked microgrids. IEEE Transactions on Smart Grid., 8(6), 3066–3074. https://doi.org/10.1109/TSG.2017.2726941

    Article  Google Scholar 

  5. Sou, K. C., Weimer, J., Sandberg, H. & Johansson, K. H. (2011). Scheduling smart home appliances using mixed integer linear programming. In 50th IEEE conference on decision and control and European control conference (pp. 5144–5149). Orlando, FL, USA. https://doi.org/10.1109/CDC.2011.6161081

  6. Hou, X., Wang, J., Huang, T., Wang, T., & Wang, P. (2019). Smart home energy management optimization method considering energy storage and electric vehicle. IEEE Access, 7, 144010–144020. https://doi.org/10.1109/ACCESS.2019.2944878

    Article  Google Scholar 

  7. Erdinc, O., Paterakis, N. G., Mendes, T. D. P., Bakirtzis, A. G., & Catalão, J. P. S. (2014). Smart household operation considering bi-directional EV and ESS utilization by real-time pricing-based DR. IEEE Transactions on Smart Grid, 6(3), 1281–1291. https://doi.org/10.1109/TSG.2014.2352650

    Article  Google Scholar 

  8. Kou, P., Liang, D., Gao, L., & Gao, F. (2015). Stochastic coordination of plug-in electric vehicles and wind turbines in microgrid: A model predictive control approach. IEEE Transactions on Smart Grid, 7(3), 1537–1551. https://doi.org/10.1109/TSG.2015.2475316

    Article  Google Scholar 

  9. Zou, Y., Dong, Y., Li, S., & Niu, Y. (2019). Multi-time hierarchical stochastic predictive control for energy management of an island microgrid with plug-in electric vehicles. IET Generation, Transmission & Distribution., 13(10), 1794–1801. https://doi.org/10.1049/iet-gtd.2018.5332

    Article  Google Scholar 

  10. Wu, C., Gao, S., Liu, Y., Song, T. E., & Han, H. (2021). A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles. Renewable Energy, 163, 1385–1396. https://doi.org/10.1016/j.renene.2020.08.137

    Article  Google Scholar 

  11. Umetani, S., Fukushima, Y., & Morita, H. (2017). A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system. Omega, 67, 115–122. https://doi.org/10.1016/j.omega.2016.04.005

    Article  Google Scholar 

  12. Corchero, C., Cruz-Zambrano, M., & Heredia, F. J. (2014). Optimal energy management for a residential microgrid including a vehicle-to-grid system. IEEE Transactions on Smart Grid., 5(4), 2163–2172. https://doi.org/10.1109/TSG.2014.2318836

    Article  Google Scholar 

  13. Wang, T., O’Neill, D., & Kamath, H. (2015). Dynamic control and optimization of distributed energy resources in a microgrid. IEEE Transactions on Smart Grid, 6(6), 2884–2894. https://doi.org/10.1109/TSG.2015.2430286

    Article  Google Scholar 

  14. Battistelli, C., Baringo, L., & Conejo, A. J. (2012). Optimal energy management of small electric energy systems including V2G facilities and renewable energy sources. Electric Power Systems Research, 92, 50–59. https://doi.org/10.1016/j.epsr.2012.06.002

    Article  Google Scholar 

  15. Lasseter, R. H., & Paigi, P. (2004). Microgrid: A conceptual solution. In IEEE 35th annual power electronics specialists conference (pp. 4285–4290). Aachen, Germany. https://doi.org/10.1109/PESC.2004.1354758

  16. Motjoadi, V., Bokoro, P. N., & Onibonoje, M. O. (2020). A review of microgrid-based approach to rural electrification in South Africa: Architecture and policy framework. Energies, 13(9), 2193. https://doi.org/10.3390/en13092193

    Article  Google Scholar 

  17. Longe, O. M., Ouahada, K., Ferreira, H. C., & Chinnappen, S. (2014). Renewable energy sources microgrid design for rural area in South Africa. In Proceedings of the innovative smart grid technologies (ISGT). Washington, DC, USA. https://doi.org/10.1109/ISGT.2014.6816378

  18. Yang, J., Liu, J., Fang, Z., & Liu, W. (2018). Electricity scheduling strategy for home energy management system with renewable energy and battery storage: A case study. IET Renewable Generation, 12(6), 639–648. https://doi.org/10.1049/iet-rpg.2017.0330

    Article  Google Scholar 

  19. Zhao, Z., Lee, W. C., Shin, Y., & Song, K. B. (2013). An optimal power scheduling method for demand response in home energy management system. IEEE Transactions on Smart Grid, 4(3), 1391–1400. https://doi.org/10.1109/TSG.2013.2251018

    Article  Google Scholar 

  20. Pedrasa, Michael Angelo, & A., Spooner, Ted D., & MacGill, Iain F. (2009). Scheduling of demand side resources using binary particle swarm optimization. IEEE Transactions on Power Systems, 24(3), 1173–1181. https://doi.org/10.1109/TPWRS.2009.2021219

    Article  Google Scholar 

  21. Mahmood, D., Javaid, N., Alrajeh, N., Khan, Z. A., Qasim, U., Ahmed, I., & Ilahi, M. (2016). Realistic scheduling mechanism for smart homes. Energies, 9(3), 202. https://doi.org/10.3390/en9030202

    Article  Google Scholar 

  22. Hooshmand, A. Poursaeidi, M. H., Mohammadpour, J., Malki, H. A. & Grigoriads, K. (2012). Stochastic model predictive control method for microgrid management. In Proceedings of the IEEE PES innovative smart grid technologies. Washington, DC, USA. https://doi.org/10.1109/ISGT.2012.6175660

  23. UCI Machine Learning Repository. Individual household electric power consumption Data Set. https://archive.ics.uci.edu/ml/ datasets/individual+household+electric+power+consumption

  24. London Datastore. Photovoltaic (PV) Solar Panel Energy Generation data. https://data.london.gov.uk/dataset/photovoltaic-pv-solar-panel-energy-generation-data

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Inuzuka.

Appendix: Nomenclature

Appendix: Nomenclature

See Tables 5 and 6.

Table 5 Parameters
Table 6 Variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inuzuka, S., Shen, T. Optimal energy consuming planning for a home-based microgrid with mobility constraint of electric vehicles and tractors. Control Theory Technol. 19, 465–483 (2021). https://doi.org/10.1007/s11768-021-00067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00067-7

Keywords

Navigation