Skip to main content
Log in

Discrete-time sliding mode control with power rate exponential reaching law of a pneumatic artificial muscle system

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper develops a discrete-time sliding mode controller with a power rate exponential reaching law approach to enhance the performance of a pneumatic artificial muscle system in both reaching time and chattering reduction. The proposed method dynamically adapts to the variation of the switching function, which is based on an exponential term and a power rate term of the sliding surface. Thus, the controlled system can achieve high tracking performance while still obtain chattering-free control. Moreover, the effectiveness of the proposed method is validated through multiple experimental tests, focused on a dual pneumatic artificial muscle system. Finally, experimental results show the effectiveness of the proposed approach in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAM:

Pneumatic artificial muscle

PID:

Proportional integral derivative

SISO:

Single input single output

DSMC:

Discrete-time sliding mode control

ERL:

Exponential reaching law

PRERL:

Power rate exponential reaching law

RMSE:

Root mean square error

References

  1. Chavoshian, M., & Taghizadeh, M. (2020). Recurrent neuro-fuzzy model of pneumatic artificial muscle position. Journal of Mechanical Science and Technology, 34, 499–508.

    Article  Google Scholar 

  2. Feja, K., Kaczmarski, M., & Riabcew, P. (2006). Manipulators driven by pneumatic muscles. In M. O. Tokhi, G. S. Virk, & M. A. Hossain (Eds.), Climbing and Walking Robots (pp. 775–782). Springer.

    Chapter  Google Scholar 

  3. Zhao, L., Liu, X., & Wang, T. (2019). Trajectory tracking control for double-joint manipulator systems driven by pneumatic artificial muscles based on a nonlinear extended state observer. Mechanical Systems and Signal Processing, 122, 307–320. https://doi.org/10.1016/j.ymssp.2018.12.016

    Article  Google Scholar 

  4. Kalita, B., & Dwivedy, S. K. (2019). Dynamic analysis of pneumatic artificial muscle (PAM) actuator for rehabilitation with principal parametric resonance condition. Nonlinear Dynamics, 97(4), 2271–2289.

    Article  Google Scholar 

  5. Zhang, C., Hu, J., Ai, Q., Meng, W., & Liu, Q. (2017). Impedance control of a pneumatic muscles-driven ankle rehabilitation robot. In Y. Huang, H. Wu, H. Liu, & Z. Yin (Eds.), Intelligent Robotics and Applications (pp. 301–312). Springer.

    Chapter  Google Scholar 

  6. Banala, S. K., Kim, S. H., Agrawal, S. K., & Scholz, J. P. (2009). Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(1), 2–8. https://doi.org/10.1109/TNSRE.2008.2008280

    Article  Google Scholar 

  7. Dao, Q.-T., & Yamamoto, S.-I. (2018). Assist-as-needed control of a robotic orthosis actuated by pneumatic artificial muscle for gait rehabilitation. Applied Sciences, 8(4), 499. https://doi.org/10.3390/app8040499

    Article  Google Scholar 

  8. Hussain, S., Xie, S. Q., & Jamwal, P. K. (2013). Control of a robotic orthosis for gait rehabilitation. Robotics and Autonomous Systems, 61(9), 911–919. https://doi.org/10.1016/j.robot.2013.01.007

    Article  Google Scholar 

  9. Andrikopoulos, G., Nikolakopoulos, G., & Manesis, S. (2014). Advanced nonlinear PID-based antagonistic control for pneumatic muscle actuators. IEEE Transactions on Industrial Electronics, 61(12), 6926–6937. https://doi.org/10.1109/TIE.2014.2316255

    Article  Google Scholar 

  10. Anh, H. P. H., & Ahn, K. K. (2011). Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse Narx fuzzy model. Engineering Applications of Artificial Intelligence, 24(4), 697–716. https://doi.org/10.1016/j.engappai.2010.11.007

    Article  Google Scholar 

  11. Xie, S., Liu, H., & Wang, Y. (2020). A method for the length-pressure hysteresis modeling of pneumatic artificial muscles. Science China Technological Sciences, 63(5), 1869–1900.

    Article  Google Scholar 

  12. Xie, S., Mei, J., Liu, H., & Wang, Y. (2018). Hysteresis modeling and trajectory tracking control of the pneumatic muscle actuator using modified Prandtl–Ishlinskii model. Mechanism and Machine Theory, 120, 213–224. https://doi.org/10.1016/j.mechmachtheory.2017.07.016

    Article  Google Scholar 

  13. Vo-Minh, T., Tjahjowidodo, T., Ramon, H., & Van Brussel, H. (2011). A new approach to modeling hysteresis in a pneumatic artificial muscle using the Maxwell-slip model. IEEE/ASME Transactions on Mechatronics, 16(1), 177–186. https://doi.org/10.1109/TMECH.2009.2038373

    Article  Google Scholar 

  14. Lilly, J. H., & Quesada, P. M. (2004). A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(3), 349–359. https://doi.org/10.1109/TNSRE.2004.831490

    Article  Google Scholar 

  15. Xing, K. (2010). Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer. IET Control Theory and Applications, 4(10), 2058–2070.

    Article  MathSciNet  Google Scholar 

  16. Chiang, C.-J., & Chen, Y.-C. (2017). Neural network fuzzy sliding mode control of pneumatic muscle actuators. Engineering Applications of Artificial Intelligence, 65, 68–86. https://doi.org/10.1016/j.engappai.2017.06.021

    Article  Google Scholar 

  17. Ahn, K., & Cong Thanh, T. D. (2004). Improvement of the control performance of pneumatic artificial muscle manipulators using an intelligent switching control method. KSME International Journal, 18(8), 1388–1400.

    Article  Google Scholar 

  18. Vo, C. P., To, X. D., & Ahn, K. K. (2019). A novel adaptive gain integral terminal sliding mode control scheme of a pneumatic artificial muscle system with time-delay estimation. IEEE Access, 7, 141133–141143. https://doi.org/10.1109/ACCESS.2019.2944197

    Article  Google Scholar 

  19. Mohorcic, J., & Dong, L. (2021). Extended state observer-based pressure control for pneumatic actuator servo systems. Control Theory and Technology, 19(1), 64–79.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dao, Q.-T., Nguyen, M.-L., & Yamamoto, S.-I. (2019). Discrete-time fractional order integral sliding mode control of an antagonistic actuator driven by pneumatic artificial muscles. Applied Sciences, 9(12), 2503. https://doi.org/10.3390/app9122503

    Article  Google Scholar 

  21. Dao, Q.-T., Mai, D.-H., Nguyen, D.-K., & Ly, N.-T. (2022). Adaptive parameter integral sliding mode control of pneumatic artificial muscles in antagonistic configuration. Journal of Control, Automation and Electrical Systems, 33(4), 1116–1124.

    Article  Google Scholar 

  22. Dao, Q.-T., & Le Tri, T.-K. (2022). Discrete-time sliding mode control based on exponential reaching law of a pneumatic artificial muscle actuator. Journal of Mechanical Engineering, 19(1), 221–237.

    Article  Google Scholar 

  23. Ma, Z., & Huang, P. (2021). Nonlinear analysis of discrete-time sliding mode prediction deployment of tethered space robot. IEEE Transactions on Industrial Electronics, 68(6), 5166–5175. https://doi.org/10.1109/TIE.2020.2992006

    Article  Google Scholar 

  24. Ma, Z., & Huang, P. (2020). Discrete-time sliding mode control for deployment of tethered space robot with only length and angle measurement. IEEE Transactions on Aerospace and Electronic Systems, 56(1), 585–596. https://doi.org/10.1109/TAES.2019.2917490

    Article  Google Scholar 

  25. Fellag, R., Hamerlain, M., Laghrouche, S., & Achour, N. (2017). Adaptive discrete sliding mode control of a pneumatic artificial muscles robot. In 2017 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B) (pp. 1–6). Boumerdes, Algeria. https://doi.org/10.1109/ICEE-B.2017.8192099

  26. Fallaha, C. J., Saad, M., Kanaan, H. Y., & Al-Haddad, K. (2011). Sliding-mode robot control with exponential reaching law. IEEE Transactions on Industrial Electronics, 58(2), 600–610. https://doi.org/10.1109/TIE.2010.2045995

    Article  Google Scholar 

  27. Gao, W., & Hung, J. C. (1993). Variable structure control of nonlinear systems: a new approach. IEEE Transactions on Industrial Electronics, 40(1), 45–55. https://doi.org/10.1109/41.184820

    Article  Google Scholar 

  28. Abidi, K., Xu, J.-X., & She, J.-H. (2009). A discrete-time terminal sliding-mode control approach applied to a motion control problem. IEEE Transactions on Industrial Electronics, 56(9), 3619–3627. https://doi.org/10.1109/TIE.2008.2010203

    Article  Google Scholar 

  29. Abidi, K., Xu, J.-X., & Xinghuo, Y. (2007). On the discrete-time integral sliding-mode control. IEEE Transactions on Automatic Control, 52(4), 709–715. https://doi.org/10.1109/TAC.2007.894537

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, S., Du, H., & Yu, X. (2014). Discrete-time terminal sliding mode control systems based on Euler’s discretization. IEEE Transactions on Automatic Control, 59(2), 546–552. https://doi.org/10.1109/TAC.2013.2273267

    Article  MathSciNet  MATH  Google Scholar 

  31. Devika, K., & B., & Thomas, S. (2017). Power rate exponential reaching law for enhanced performance of sliding mode control. International Journal of Control, Automation and Systems, 15(6), 2636–2645.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quy-Thinh Dao or Trung-Kien Le Tri.

Additional information

Quy-Thinh Dao, Trung-Kien Le Tri, Van-Anh Nguyen and Manh-Linh Nguyen have contributed equally to this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, QT., Le Tri, TK., Nguyen, VA. et al. Discrete-time sliding mode control with power rate exponential reaching law of a pneumatic artificial muscle system. Control Theory Technol. 20, 514–524 (2022). https://doi.org/10.1007/s11768-022-00117-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00117-8

Keywords

Navigation