Skip to main content
Log in

Stabilization of an uncertain multiple-oscillator system

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

For a multiple-oscillator system that is subject to the uncertain gains ranging within compact sets, this paper presents a constructive stabilization design. Motivated by nested-saturation control methods, a nested controller that contains multiplicative coefficients is directly designed, and these coefficients are then determined in the stability analysis. By skillfully making transformations, elaborately constructing Lyapunov functions, and using an M-matrix principle, the stability analysis leads to the explicit inequality condition that is expressed by directly using the system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sussmann, H. J., & Sontag, E. D. (1994). A general result on the stabilization of linear systems using bounded controls. IEEE Transactions on Automatic Control, 39(12), 2411–2425.

    Article  MathSciNet  Google Scholar 

  2. Marconi, L., & Isidori, A. (2001). Robust global stabilization of a class of uncertain feed-forward nonlinear systems. Systems & Control Letters, 41, 281–290.

    Article  Google Scholar 

  3. Mazenc, F., Mondie, S., & Niculescu, S. I. (2003). Global asymptotic stabilization for chains of integrators with a delay in the input. IEEE Transactions on Automatic Control, 48(1), 57–63.

    Article  MathSciNet  Google Scholar 

  4. Ye, X., Huang, J., & Unbehauen, H. (2006). Decentralized robust stabilization for large-scale feed-forward nonlinear systems. International Journal of Control, 79, 1505–1511.

    Article  MathSciNet  Google Scholar 

  5. Zhou, B., & Duan, G. (2007). Global stabilization of multiple integrators via saturated controls. IET Control Theory and Applications, 1(6), 1586–1593.

    Article  Google Scholar 

  6. Ding, S., Qian, C., & Li, S. (2010). Global stabilization of a class of feed-forward systems with lower-order nonlinearities. IEEE Transactions on Automatic Control, 55(3), 691–696.

    Article  MathSciNet  Google Scholar 

  7. Zhou, B., Lam, J., Lin, Z., & Duan, G. (2010). Global stabilization and restricted tracking with bounded feedback for multiple oscillator systems. Systems & Control Letters, 59(7), 414–422.

    Article  MathSciNet  Google Scholar 

  8. Ye, H., & Gui, W. (2012). Simple saturated designs for ANCBC systems and extension to feed-forward nonlinear systems. International Journal of Control, 85(12), 1838–1850.

    Article  MathSciNet  Google Scholar 

  9. Mazenc, F., Mondie, S., & Niculescu, S. (2004). Global stabilization of oscillators with bounded delayed input. Systems & Control Letters, 53(5), 415–422.

    Article  MathSciNet  Google Scholar 

  10. Fang, H., & Lin, Z. (2006). A further result on global stabilization of oscillators with bounded delayed input. IEEE Transactions on Automatic Control, 51(1), 121–128.

    Article  MathSciNet  Google Scholar 

  11. Yang, X., Zhou, B., & Lam, J. (2017). Global stabilization of multiple oscillator systems by delayed and bounded feedback. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(6), 675–679.

    Google Scholar 

  12. Angeli, D., Chitour, Y., & Marconi, L. (2005). Robust stabilization via saturated feedback. IEEE Transactions on Automatic Control, 50(12), 1997–2014.

    Article  MathSciNet  Google Scholar 

  13. Li, M., Shi, Y., & Ye, H. (2020). Saturated stabilization for an uncertain cascaded system subject to an oscillator. Automatica. https://doi.org/10.1016/j.automatica.2020.108878

  14. Ye, H. (2019). Stabilization of uncertain feedforward nonlinear systems with application to under-actuated systems. IEEE Transactions on Automatic Control, 64(8), 3484–3491.

    Article  MathSciNet  Google Scholar 

  15. Wang, Q., Zhou, B., & Duan, G. (2015). Robust gain scheduled control of spacecraft rendezvous system subject to input saturation. Aerospace Science and Technology, 42, 442–450.

    Article  Google Scholar 

  16. Ge, S. S., & Wang, C. (2000). Adaptive control of uncertain Chua’s circuits. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 47(9), 1397-1402.

  17. Cao, Y., Lin, Z., & Shamash, Y. (2002). Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation. Systems & Control Letters, 46, 137–151.

    Article  MathSciNet  Google Scholar 

  18. Zhang, H., Zhao, S., & Gao, Z. (2016). An active disturbance rejection control solution for the two-mass-spring benchmark problem. 2016 American Control Conference (ACC) (pp. 1566–1571). Boston: MA, USA.

  19. Berman, A., & Plemmons, R. (1979). Nonnegative matrices in mathematical sciences. New York: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huawen Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Li, C., Qi, X. et al. Stabilization of an uncertain multiple-oscillator system. Control Theory Technol. 20, 361–370 (2022). https://doi.org/10.1007/s11768-022-00104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00104-z

Keywords

Navigation