Skip to main content
Log in

Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview

  • Review
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper reviews recent developments in learning-based adaptive optimal output regulation that aims to solve the problem of adaptive and optimal asymptotic tracking with disturbance rejection. The proposed framework aims to bring together two separate topics—output regulation and adaptive dynamic programming—that have been under extensive investigation due to their broad applications in modern control engineering. Under this framework, one can solve optimal output regulation problems of linear, partially linear, nonlinear, and multi-agent systems in a data-driven manner. We will also review some practical applications based on this framework, such as semi-autonomous vehicles, connected and autonomous vehicles, and nonlinear oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Astolfi, A., & Marconi, L. (Eds.) (2008). Analysis and design of nonlinear control systems (1st edn.). Springer.

  2. Astolfi, D., Praly, L., Marconi, L., & Paristech, M. (2021). Nonlinear robust periodic output regulation of minimum phase systems. arXiv:2109.06504.

  3. Bonivento, C., Marconi, L., Rossi, C., & Isidori, A. (Eds.) (2007). Advances in control theory and applications. Springer.

  4. Cocetti, M., Serrani, A., & Zaccarian, L. (2018). Linear output regulation with dynamic optimization for uncertain linear over-actuated systems. Automatica, 97, 214–225.

    MathSciNet  MATH  Google Scholar 

  5. Francis, B. (1977). The linear multivariable regulator problem. SIAM Journal on Control and Optimization, 15(3), 486–505.

    MathSciNet  MATH  Google Scholar 

  6. Huang, J. (2004). Nonlinear output regulation: Theory and applications. SIAM.

  7. Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131–140.

    MathSciNet  MATH  Google Scholar 

  8. Khan, G. D., Chen, Z., & Zhu, L. (2020). A new approach for event-triggered stabilization and output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 65(8), 3592–3599.

    MathSciNet  MATH  Google Scholar 

  9. Marconi, L., & Praly, L. (2008). Uniform practical nonlinear output regulation. IEEE Transactions on Automatic Control, 53(5), 1184–1202.

    MathSciNet  MATH  Google Scholar 

  10. Marino, R., & Tomei, P. (2021). Adaptive output regulation for minimum-phase systems with unknown relative degree. Automatica, 130, 109670.

    MathSciNet  MATH  Google Scholar 

  11. Teng, J., Gao, W., Czarkowski, D., & Jiang, Z. P. (2020). Optimal tracking with disturbance rejection of voltage source inverters. IEEE Transactions on Industrial Electronics, 67(6), 4957–4968.

    Google Scholar 

  12. James, H. M., Nichols, N. B., & Phillips, R. S. (1947). Theory of servomechanisms (1st edn.). The Maple Press Company.

  13. MacColl, L. A. (1945). Fundamental theory of servomechanisms (3rd edn.). Bell Telephone Laboratory Inc.

  14. Davison, E. (1972). The output control of linear time-invariant multivariable systems with unmeasurable arbitrary disturbances. IEEE Transactions on Automatic Control, 17(5), 621–630.

    MathSciNet  MATH  Google Scholar 

  15. Davison, E. J., & Goldenberg, A. (1975). Robust control of a general servomechanism problem: The servo compensator. Automatica, 11(5), 461–471.

    MathSciNet  MATH  Google Scholar 

  16. Francis, B. A., & Wonham, W. (1975). The internal model principle for linear multivariable regulators. Applied Mathematics and Optimization, 2(2), 170–194.

    MathSciNet  MATH  Google Scholar 

  17. Francis, B. A., & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457–465.

    MathSciNet  MATH  Google Scholar 

  18. Marino, R., & Tomei, P. (2003). Output regulation for linear systems via adaptive internal model. IEEE Transactions on Automatic Control, 48(12), 2199–2202.

    MathSciNet  MATH  Google Scholar 

  19. Deng, C., Gao, W., & Che, W. (2020). Distributed adaptive fault-tolerant output regulation of heterogeneous multi-agent systems with coupling uncertainties and actuator faults. IEEE/CAA Journal of Automatica Sinica, 7(4), 1098–1106.

    MathSciNet  Google Scholar 

  20. Deng, C., & Yang, G. H. (2019). Distributed adaptive fault-tolerant control approach to cooperative output regulation for linear multi-agent systems. Automatica, 103, 62–68.

    MathSciNet  MATH  Google Scholar 

  21. Li, Z., Chen, M. Z., & Ding, Z. (2016). Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs. Automatica, 68, 179–183.

    MathSciNet  MATH  Google Scholar 

  22. Lu, M., & Liu, L. (2017). Distributed feedforward approach to cooperative output regulation subject to communication delays and switching networks. IEEE Transactions on Automatic Control, 62(4), 1999–2005.

    MathSciNet  MATH  Google Scholar 

  23. Su, Y., & Huang, J. (2012). Cooperative output regulation of linear multi-agent systems. IEEE Transactions on Automatic Control, 57(4), 1062–1066.

    MathSciNet  MATH  Google Scholar 

  24. Su, Y., & Huang, J. (2012). Cooperative output regulation with application to multi-agent consensus under switching network. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3), 864–875.

  25. Desoer, C., & Lin, C. A. (1985). Tracking and disturbance rejection of MIMO nonlinear systems with PI controller. IEEE Transactions on Automatic Control, 30(9), 861–867. https://doi.org/10.1109/TAC.1985.1104078.

    Article  MathSciNet  MATH  Google Scholar 

  26. Carr, J. (1981). Applications of centre manifold theory. Springer.

    MATH  Google Scholar 

  27. Huang, J., & Rugh, W. J. (1992). An approximation method for the nonlinear servomechanism problem. IEEE Transactions on Automatic Control, 37(9), 1395–1398.

    MathSciNet  MATH  Google Scholar 

  28. Byrnes, C. I., Priscoli, F. D., Isidori, A., & Kang, W. (1997). Structurally stable output regulation of nonlinear systems. Automatica, 33(3), 369–385.

    MathSciNet  MATH  Google Scholar 

  29. Huang, J., & Chen, Z. (2004). A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control, 49(12), 2203–2218.

    MathSciNet  MATH  Google Scholar 

  30. Khalil, H. K. (1994). Robust servomechanism output feedback controllers for feedback linearizable systems. Automatica, 30(10), 1587–1599.

    MathSciNet  MATH  Google Scholar 

  31. Serrani, A., Isidori, A., & Marconi, L. (2001). Semiglobal nonlinear output regulation with adaptive internal model. IEEE Transactions on Automatic Control, 46(8), 1178–1194.

    MathSciNet  MATH  Google Scholar 

  32. Xu, D. (2018). Constructive nonlinear internal models for global robust output regulation and application. IEEE Transactions on Automatic Control, 63(5), 1523–1530.

    MathSciNet  MATH  Google Scholar 

  33. Johnson, C. D. (1971). Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Transactions on Automatic Control, 16, 635–644.

    Google Scholar 

  34. Krener, A. J. (1992). The construction of optimal linear and nonlinear regulators. In A. Isidori, T. J. Tarn (Eds.) Systems, models and feedback: Theory and applications (vol. 12, pp. 301–322). Birkhauser.

  35. Saberi, A., Stoorvogel, A., Sannuti, P., & Shi, G. (2003). On optimal output regulation for linear systems. International Journal of Control, 76(4), 319–333.

    MathSciNet  MATH  Google Scholar 

  36. Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv:1509.02971.

  37. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Google Scholar 

  38. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Google Scholar 

  39. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354–359.

    Google Scholar 

  40. Lan, W., & Huang, J. (2007). Neural-network-based approximate output regulation of discrete-time nonlinear systems. IEEE Transactions on Neural Networks, 18(4), 1196–1208.

    Google Scholar 

  41. Wang, J., & Huang, J. (2001). Neural network enhanced output regulation in nonlinear systems. Automatica, 37(8), 1189–1200.

    MathSciNet  MATH  Google Scholar 

  42. Rehák, B., & Čelikovský, S. (2008). Numerical method for the solution of the regulator equation with application to nonlinear tracking. Automatica, 44(5), 1358–1365.

    MathSciNet  MATH  Google Scholar 

  43. Gao, W., & Jiang, Z. P. (2016). Adaptive dynamic programming and adaptive optimal output regulation of linear systems. IEEE Transactions on Automatic Control, 61(12), 4164–4169.

    MathSciNet  MATH  Google Scholar 

  44. Gao, W., & Jiang, Z. P. (2018). Learning-based adaptive optimal tracking control of strict-feedback nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 29(6), 2614–2624.

    MathSciNet  Google Scholar 

  45. Gao, W., Jiang, Z. P., Lewis, F. L., & Wang, Y. (2018). Leader-to-formation stability of multi-agent systems: An adaptive optimal control approach. IEEE Transactions on Automatic Control, 63(10), 3581–3587.

    MathSciNet  MATH  Google Scholar 

  46. Bian, T., & Jiang, Z. P. (2016). Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design. Automatica, 71, 348–360.

    MathSciNet  MATH  Google Scholar 

  47. Bian, T., & Jiang, Z. P. (2019). Continuous-time robust dynamic programming. SIAM Journal of Control and Optimization, 57(6), 4150–4174.

    MathSciNet  MATH  Google Scholar 

  48. Davari, M., Gao, W., Jiang, Z. P., & Lewis, F. L. (2021). An optimal primary frequency control based on adaptive dynamic programming for islanded modernized microgrids. IEEE Transactions on Automation Science and Engineering, 18(3), 1109–1121.

    Google Scholar 

  49. Davoud, S., Gao, W., & Riveros-Perez, E. (2020). Adaptive optimal target controlled infusion algorithm to prevent hypotension associated with labor epidural: An adaptive dynamic programming approach. ISA Transactions, 100, 74–81.

    Google Scholar 

  50. Gao, X., Si, J., Wen, Y., Li, M., & He, H. (2021). Reinforcement learning control of robotic knee with human in the loop by flexible policy iteration. arXiv:2006.09008.

  51. He, S., Fang, H., Zhang, M., Liu, F., & Ding, Z. (2020). Adaptive optimal control for a class of nonlinear systems: The online policy iteration approach. IEEE Transactions on Neural Networks and Learning Systems, 31(2), 549–558.

    MathSciNet  Google Scholar 

  52. Heydari, A. (2018). Stability analysis of optimal adaptive control using value iteration with approximation errors. IEEE Transactions on Automatic Control, 63(9), 3119–3126.

    MathSciNet  MATH  Google Scholar 

  53. Jiang, Y., & Jiang, Z. P. (2017). Robust adaptive dynamic programming. Wiley-IEEE Press.

  54. Jiang, Z. P., Bian, T., & Gao, W. (2020). Learning-based control: A tutorial and some recent results. Foundations and Trends in Systems and Control, 8(3), 176–284.

    Google Scholar 

  55. Kamalapurkar, R., Walters, P., Rosenfeld, J., & Dixon, W. E. (2018). Reinforcement learning for optimal feedback control: A Lyapunov-based approach. Springer.

  56. Liu, D., Xue, S., Zhao, B., Luo, B., & Wei, Q. (2021). Adaptive dynamic programming for control: A survey and recent advances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 142–160.

    Google Scholar 

  57. Murray, J. J., Cox, C. J., Lendaris, G. G., & Saeks, R. (2002). Adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 32(2), 140–153.

    Google Scholar 

  58. Na, J., Wang, B., Li, G., Zhan, S., & He, W. (2019). Nonlinear constrained optimal control of wave energy converters with adaptive dynamic programming. IEEE Transactions on Industrial Electronics, 66(10), 7904–7915.

    Google Scholar 

  59. Pang, B., Bian, T., & Jiang, Z. P. (2021). Robust policy iteration for continuous-time linear quadratic regulation. IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2021.3085510

    Article  Google Scholar 

  60. Rizvi, S. A. A., & Lin, Z. (2020). Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback. IEEE Transactions on Cybernetics, 50(11), 4670–4679. https://doi.org/10.1109/TCYB.2018.2886735

    Article  Google Scholar 

  61. Vamvoudakis, K. G., Lewis, F. L., & Hudas, G. R. (2012). Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality. Automatica, 48(8), 1598–1611.

    MathSciNet  MATH  Google Scholar 

  62. Wei, Q., Li, H., Yang, X., & He, H. (2021). Continuous-time distributed policy iteration for multicontroller nonlinear systems. IEEE Transactions on Cybernetics, 51(5), 2372–2383.

    Google Scholar 

  63. Yang, Y., Gao, W., Modares, H., & Xu, C. Z. (2021). Robust actor-critic learning for continuous-time nonlinear systems with unmodeled dynamics. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2021.3075501

    Article  Google Scholar 

  64. Yang, Y., Modares, H., Vamvoudakis, K. G., He, W., Xu, C. Z., & Wunsch, D. C. (2021). Hamiltonian-driven adaptive dynamic programming with approximation errors. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2021.3108034

    Article  Google Scholar 

  65. Zhang, H., Jiang, H., Luo, Y., & Xiao, G. (2017). Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Transactions on Industrial Electronics, 64(5), 4091–4100.

    Google Scholar 

  66. Zhao, J., Yang, C., Dai, W., & Gao, W. (2021). Reinforcement learning-based composite optimal operational control of industrial systems with multiple unit devices. IEEE Transactions on Industrial Informatics. https://doi.org/10.1109/TII.2021.3076471

    Article  Google Scholar 

  67. Zhao, F., Gao, W., Liu, T., & Jiang, Z. P. (2022). Adaptive optimal output regulation of linear discrete-time systems based on event-triggered output-feedback. Automatica, 137, 110103.

    MathSciNet  MATH  Google Scholar 

  68. Zhao, J., Yang, C., & Gao, W. (2021). Reinforcement learning based optimal control of linear singularly perturbed systems. IEEE Transactions on Circuits and Systems II: Express Briefs.https://doi.org/10.1109/TCSII.2021.3105652

    Article  Google Scholar 

  69. Yang, Y., Kiumarsi, B., Modares, H., & Xu, C. (2021). Model-free \(\lambda \)-policy iteration for discrete-time linear quadratic regulation. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3098985

    Article  Google Scholar 

  70. Bian, T., & Jiang, Z. P. (2021). Reinforcement learning and adaptive optimal control for continuous-time nonlinear systems: A value iteration approach. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3045087

    Article  MathSciNet  Google Scholar 

  71. Jiang, Y., Gao, W., Na, J., Zhang, D., Hämäläinen, T. T., Stojanovic, V., & Lewis, F. L. (2022). Value iteration and adaptive optimal output regulation with assured convergence rate. Control Engineering Practice, 121, 105042.

    Google Scholar 

  72. Zhao, F., Gao, W., Jiang, Z. P., & Liu, T. (2020). Event-triggered adaptive optimal control with output feedback: An adaptive dynamic programming approach. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3027301

    Article  Google Scholar 

  73. Cui, L., Wang, S., Zhang, Z., & Jiang, Z. P. (2022). Asymptotic trajectory tracking of autonomous bicycles via backstepping and optimal control. IEEE Control Systems Letters, 6, 1292–1297.

    Google Scholar 

  74. Gao, W., & Jiang, Z. P. (2019). Adaptive optimal output regulation of time-delay systems via measurement feedback. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 938–945.

    MathSciNet  Google Scholar 

  75. Jiang, Y., Kiumarsi, B., Fan, J., Chai, T., Li, J., & Lewis, F. L. (2020). Optimal output regulation of linear discrete-time systems with unknown dynamics using reinforcement learning. IEEE Transactions on Cybernetics, 50(7), 3147–3156.

    Google Scholar 

  76. Liu, Y., & Gao, W. (2018). Adaptive optimal output regulation of continuous-time linear systems via internal model principle. In 9th IEEE annual ubiquitous computing, electronics mobile communication conference (UEMCON) (pp. 38–43). New York, NY, USA.

  77. Saberi, A., Kokotovic, P., & Sussmann, S. (1990). Global stabilization of partially linear composite systems. SIAM Journal of Control and Optimization, 2(6), 1491–1503.

    MathSciNet  MATH  Google Scholar 

  78. Jiang, Z. P., Teel, A. R., & Praly, L. (1994). Small-gain theorem for ISS systems and applications. Mathematics of Control, Signals and Systems, 7(2), 95–120.

    MathSciNet  MATH  Google Scholar 

  79. Sontag, E. D. (2007). Input to state stability: Basic concepts and results. In P. Nistri & G. Stefani (Eds.), Nonlinear and optimal control theory (pp. 163–220). Springer.

    Google Scholar 

  80. Gao, W., & Jiang, Z. P. (2015). Global optimal output regulation of partially linear systems via robust adaptive dynamic p rogramming. In Proceedings 1st Conference on Modelling. Identification and Control of Nonlinear Systems (pp. 742–747). Saint-Petersburg, Russia.

  81. Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal control. Wiley.

    MATH  Google Scholar 

  82. Vamvoudakis, K. G., & Lewis, F. L. (2011). Multi-player non-zero-sum games: Online adaptive learning solution of coupled Hamilton-Jacobi equations. Automatica, 47(8), 1556–1569.

    MathSciNet  MATH  Google Scholar 

  83. Odekunle, A., Gao, W., Davari, M., & Jiang, Z. P. (2020). Reinforcement learning and non-zero-sum game output regulation for multi-player linear uncertain systems. Automatica, 112, 108672.

    MathSciNet  MATH  Google Scholar 

  84. Odekunle, A., Gao, W., & Wang, Y. (2019). Data-driven global robust optimal output regulation of uncertain partially linear systems. IEEE/CAA Journal of Automatica Sinica, 6(5), 1108–1115.

    MathSciNet  Google Scholar 

  85. Jiang, Z. P., & Liu, T. (2018). Small-gain theory for stability and control of dynamical networks: A survey. Annual Reviews in Control, 46, 58–79.

    MathSciNet  Google Scholar 

  86. Gao, W., Mynuddin, M., Wunsch, D. C., & Jiang, Z. P. (2021). Reinforcement learning-based cooperative optimal output regulation via distributed adaptive internal model. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3069728

    Article  Google Scholar 

  87. Gao, W., Liu, Y., Odekunle, A., Yu, Y., & Lu, P. (2018). Adaptive dynamic programming and cooperative output regulation of discrete-time multi-agent systems. International Journal of Control, Automation and Systems, 16, 2273–2281.

    Google Scholar 

  88. Gao, W., Jiang, Y., & Davari, M. (2019). Data-driven cooperative output regulation of multi-agent systems via robust adaptive dynamic programming. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(3), 447–451.

    Google Scholar 

  89. Krstic, M., Kanellakopoulos, I., & Kokotovic, P. V. (1995). Nonlinear and adaptive control design. Wiley.

    MATH  Google Scholar 

  90. Powell, M. J. D. (1981). Approximation theory and methods. Cambridge University Press.

    MATH  Google Scholar 

  91. Jiang, Y., Fan, J., Gao, W., Chai, T., & Lewis, F. L. (2020). Cooperative adaptive optimal output regulation of nonlinear discrete-time multi-agent systems. Automatica, 121, 109149.

    MathSciNet  MATH  Google Scholar 

  92. Salvucci, D. D., & Gray, R. (2004). A two-point visual control model of steering. Perception, 33(10), 1233–1248.

    Google Scholar 

  93. Huang, M., Gao, W., Wang, Y., & Jiang, Z. P. (2019). Data-driven shared steering control of semi-autonomous vehicles. IEEE Transactions on Human-Machine Systems, 49(4), 350–361.

    Google Scholar 

  94. Gao, W., Gao, J., Ozbay, K., & Jiang, Z. P. (2019). Reinforcement-learning-based cooperative adaptive cruise control of buses in the Lincoln tunnel corridor with time-varying topology. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3796–3805.

    Google Scholar 

  95. Gao, W., & Jiang, Z. P. (2017). Nonlinear and adaptive suboptimal control of connected vehicles: A global adaptive dynamic programming approach. Journal of Intelligent & Robotic Systems, 85(3), 597–611.

    Google Scholar 

  96. Gao, W., Jiang, Z. P., & Ozbay, K. (2017). Data-driven adaptive optimal control of connected vehicles. IEEE Transactions on Intelligent Transportation Systems, 18(5), 1122–1133. https://doi.org/10.1109/TITS.2016.2597279.

    Article  Google Scholar 

  97. Gao, W., Odekunle, A., Chen, Y., & Jiang, Z. P. (2019). Predictive cruise control of connected and autonomous vehicles via reinforcement learning. IET Control Theory & Applications, 13(17), 2849–2855.

    Google Scholar 

  98. Mynuddin, M., & Gao, W. (2020). Distributed predictive cruise control based on reinforcement learning and validation on microscopic traffic simulation. IET Control Theory and Applications, 14(5), 270–277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weinan Gao.

Additional information

This work was supported in part by the U.S. National Science Foundation (EPCN-1903781, CMMI-2138206)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Jiang, ZP. Learning-based adaptive optimal output regulation of linear and nonlinear systems: an overview. Control Theory Technol. 20, 1–19 (2022). https://doi.org/10.1007/s11768-022-00081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00081-3

Keywords

Navigation