Skip to main content
Log in

Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This article addresses the nonlinear state estimation problem where the conventional Gaussian assumption is completely relaxed. Here, the uncertainties in process and measurements are assumed non-Gaussian, such that the maximum correntropy criterion (MCC) is chosen to replace the conventional minimum mean square error criterion. Furthermore, the MCC is realized using Gaussian as well as Cauchy kernels by defining an appropriate cost function. Simulation results demonstrate the superior estimation accuracy of the developed estimators for two nonlinear estimation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Radhakrishnan, R., Bhaumik, S., & Tomar, N. K. (2018). Gaussian sum shifted Rayleigh filter for underwater bearings-only target tracking problems. IEEE Journal of Oceanic Engineering, 44(2), 492–501.

    Article  Google Scholar 

  2. He, X., Xue, W., Fang, H., & Hu, X. (2020). Consistent Kalman filters for nonlinear uncertain systems over sensor networks. Control Theory and Technology, 18(4), 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hu, C., Hu, X., & Hong, Y. (2019). Distributed adaptive Kalman filter based on variational Bayesian technique. Control Theory and Technology, 17(1), 37–47.

    Article  MathSciNet  MATH  Google Scholar 

  4. Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems. In: Proceedings Volume 3068, Signal Processing, Sensor Fusion, and Target Recognition, pp. 182–193. SPIE.

  5. Arasaratnam, I., & Haykin, S. (2009). Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 1254–1269.

    Article  MathSciNet  MATH  Google Scholar 

  6. Radhakrishnan, R., Yadav, A., Date, P., & Bhaumik, S. (2018). A new method for generating sigma points and weights for nonlinear filtering. IEEE Control Systems Letters, 2(3), 519–524.

    Article  MathSciNet  Google Scholar 

  7. Garcia, R., Pardal, P., Kuga, H., & Zanardi, M. (2019). Nonlinear filtering for sequential spacecraft attitude estimation with real data: Cubature Kalman filter, unscented Kalman filter and extended Kalman filter. Advances in Space Research, 63(2), 1038–1050.

    Article  Google Scholar 

  8. Wu, H., Chen, S., Yang, B., & Chen, K. (2016). Robust derivative-free cubature Kalman filter for bearings-only tracking. Journal of Guidance, Control, and Dynamics, 39(8), 1865–1870.

    Article  Google Scholar 

  9. Wang, G., Li, N., & Zhang, Y. (2017). Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise. Journal of the Franklin Institute, 354(18), 8659–8677.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, W.-R. (1993). Target racking with glint noise. IEEE Transactions on Aerospace and Electronic Systems, 29(1), 174–185.

    Article  Google Scholar 

  11. Li, T., Bolic, M., & Djuric, P. M. (2015). Resampling methods for particle filtering: Classification, implementation, and strategies. IEEE Signal Processing Magazine, 32(3), 70–86.

    Article  Google Scholar 

  12. Alspach, D., & Sorenson, H. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4), 439–448.

    Article  MATH  Google Scholar 

  13. Liu, W., Pokharel, P. P., & Principe, J. C. (2006). Correntropy: A localized similarity measure. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 4919–4924. IEEE.

  14. Liu, W., Pokharel, P. P., & Principe, J. C. (2007). Correntropy: Properties and applications in non-gaussian signal processing. IEEE Transactions on Signal Processing, 55(11), 5286–5298.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cinar, G. T., & Príncipe, J. C. (2012). Hidden state estimation using the correntropy filter with fixed point update and adaptive kernel size. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE.

  16. Cinar, G. T., & Príncipe, J. C. (2011). Adaptive background estimation using an information theoretic cost for hidden state estimation. In: The 2011 International Joint Conference on Neural Networks, pp. 489–494. IEEE.

  17. Chen, B., Liu, X., Zhao, H., & Principe, J. C. (2017). Maximum correntropy Kalman filter. Automatica, 76, 70–77.

    Article  MathSciNet  MATH  Google Scholar 

  18. Izanloo, R., Fakoorian, S. A., Yazdi, H. S., & Simon, D. (2016). Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise. In: 2016 Annual Conference on Information Science and Systems (CISS), pp. 500–505. IEEE.

  19. Liu, X., Qu, H., Zhao, J., & Chen, B. (2016). Extended Kalman filter under maximum correntropy criterion. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1733–1737. IEEE.

  20. Liu, X., Qu, H., Zhao, J., Yue, P., & Wang, M. (2016). Maximum correntropy unscented Kalman filter for spacecraft relative state estimation. Sensors, 16(9), 1530.

    Article  Google Scholar 

  21. Liu, X., Chen, B., Xu, B., Wu, Z., & Honeine, P. (2017). Maximum correntropy unscented filter. International Journal of Systems Science, 48(8), 1607–1615.

    Article  MathSciNet  MATH  Google Scholar 

  22. Qin, W., Wang, X., & Cui, N. (2017). Maximum correntropy sparse Gauss–Hermite quadrature filter and its application in tracking ballistic missile. IET Radar, Sonar and Navigation, 11(9), 1388–1396.

    Article  Google Scholar 

  23. Kulikova, M. V. (2017). Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise. Systems and Control Letters, 108, 8–15.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kulikova, M. V. (2019). Chandrasekhar-based maximum correntropy Kalman filtering with the adaptive kernel size selection. IEEE Transactions on Automatic Control, 65(2), 741–748.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, G., Zhang, Y., & Wang, X. (2019). Iterated maximum correntropy unscented Kalman filters for non-gaussian systems. Signal Processing, 163, 87–94.

    Article  Google Scholar 

  26. Wang, J., Lyu, D., He, Z., Zhou, H., & Wang, D. (2020). Cauchy kernel-based maximum correntropy Kalman filter. International Journal of Systems Science, 51(16), 3523–3538.

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, H., Ding, D., Dong, H., & Yi, X. (2022). Distributed filtering based on Cauchy–Kernel-based maximum correntropy subject to randomly occurring cyber-attacks. Automatica, 135, 110004.

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, S., Shi, D., Zou, W., & Shi, L. (2021). Multi-kernel maximum correntropy Kalman filter. IEEE Control Systems Letters, 6, 1490–1495.

    Article  MathSciNet  Google Scholar 

  29. Urooj, A., Dak, A., Ristic, B., & Radhakrishnan, R. (2022). 2D and 3D angles-only target tracking based on maximum correntropy Kalman filters. Sensors. https://doi.org/10.3390/s22155625

    Article  Google Scholar 

  30. Kulikov, G. Y., & Kulikova, M. V. (2020). A comparative study of Kalman-like filters for state estimation of turning aircraft in presence of glint noise. IFAC-PapersOnLine, 53(2), 2335–2340.

    Article  Google Scholar 

Download references

Funding

This research was funded by SVNIT Surat Project No. 2020-21/seed money/30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Radhakrishnan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dak, A., Radhakrishnan, R. Non-iterative Cauchy kernel-based maximum correntropy cubature Kalman filter for non-Gaussian systems. Control Theory Technol. 20, 465–474 (2022). https://doi.org/10.1007/s11768-022-00116-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00116-9

Keywords

Navigation