Skip to main content
Log in

On disturbance rejection proportional–integral–differential control with model-free adaptation

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

In this paper, an adaptive disturbance-rejection proportional–integral–differential (PID) control method is proposed for a class of nonlinear systems. First, PID-type criterion is introduced in a model-free adaptive control (MFAC) framework, which gives an optimal control interpretation for PID controller. Then, the design of adaptive disturbance rejection PID is proposed based on this new interpretation to realize controller gain auto-tuning. Due to the ingenious integration of active disturbance rejection and adaptive mechanism, the proposed adaptive disturbance rejection PID control scheme exhibits better control performance than MFAC case. Furthermore, the boundedness of controller gain, the convergence of tracking error and the bounded-input–bounded-output stability are proved for the proposed control system. Finally, the effectiveness of the proposed method is verified by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hou, Z.-S., & Jin, S.-T. (2013). Model free adaptive control: Theory and applications. CRC Press.

    Book  MATH  Google Scholar 

  2. Hou, Z.-S., & Xu, J.-X. (2009). On data-driven control theory: The state of the art and perspective. Acta Automatica Sinica, 35(6), 650–667. https://doi.org/10.3724/SP.J.1004.2009.00650

    Article  Google Scholar 

  3. Hou, Z.-S., & Wang, Z. (2013). From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 235, 3–35. https://doi.org/10.1016/j.ins.2012.07.014

  4. Spall, J. C., & Cristion, J. A. (1993). Model-free control of general discrete-time systems. IEEE Conference on Decision and Control, 1993(3), 2792–2797. https://doi.org/10.1109/CDC.1993.325704

    Article  Google Scholar 

  5. Rezayat, F. (1994). On the use of SPSA-based model-free controller in quality improvement. IEEE Conference on Decision and Control, 1994(2), 1876–1878. https://doi.org/10.1109/CDC.1994.411109

    Article  Google Scholar 

  6. Hou, Z. -S., & Huang, W. -H. (1997). The model-free learning adaptive control of a class of SISO nonlinear systems. In Proceedings of the 1997 American Control Conference (Cat. No.97CH36041) (vol. 1, pp. 343–344), Albuquerque, NM, USA. https://doi.org/10.1109/ACC.1997.611815

  7. Hou, Z.-S., & Jin, S.-T. (2011). A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Transactions on Control Systems Technology, 19(6), 1549–1558. https://doi.org/10.1109/TCST.2010.2093136

    Article  Google Scholar 

  8. Hou, Z.-S., & Xiong, S.-S. (2019). On model-free adaptive control and its stability analysis. IEEE Transactions on Automatic Control, 64(11), 4555–4569. https://doi.org/10.1109/TAC.2019.2894586

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou, Z.-S., & Jin, S.-T. (2011). Data-driven model-free adaptive control for a class of mimo nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 22(12), 2173–2188. https://doi.org/10.1109/ACCESS.2019.2931198

    Article  Google Scholar 

  10. Hou, Z.-S., Chi, R.-H., & Gao, H.-J. (2017). An overview of dynamic-linearization-based data-driven control and applications. IEEE Transactions on Industrial Electronics, 64(5), 4076–4090. https://doi.org/10.1109/TIE.2016.2636126

    Article  Google Scholar 

  11. Guardabassi, G. O., & Savaresi, S. M. (2000). Virtual reference direct design method: An off-line approach to data-based control system design. IEEE Transactions on Automatic Control, 45(5), 954–959. https://doi.org/10.1109/9.855559

    Article  MathSciNet  MATH  Google Scholar 

  12. Campi, M. C., Lecchini, A., & Savaresi, S. M. (2002). Virtual reference feedback tuning: A direct method for the design of feedback controllers. Automatica, 38(8), 1337–1346. https://doi.org/10.1016/S0005-1098(02)00032-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Rallo, G., Formentin, S., Rojas, C. R., & Savaresi, S. M. (2018). Robust Experiment Design for Virtual Reference Feedback Tuning. IEEE Conference on Decision and Control, 2018, 2271–2276. https://doi.org/10.1109/CDC.2018.8619732

    Article  Google Scholar 

  14. Wang, Y., & Tang, X. -J. (2016). Attitude controller optimization for unmanned gyroplane using online virtual reference feedback control. In 2016 35th Chinese control conference (pp. 10754–10758), Chengdu, China. https://doi.org/10.1109/ChiCC.2016.7555063.

  15. Arimoto, S., Kawamura, S., & Miyazaki, F. (1984). Bettering operation of robots by learning. Journal of Robotic Systems, 1(2), 123–140. https://doi.org/10.1002/rob.4620010203

    Article  Google Scholar 

  16. Ge, X.-Y., Stein, J. L., & Ersal, T. (2018). Frequency-domain analysis of robust monotonic convergence of norm-optimal iterative learning control. IEEE Transactions on Control Systems Technology, 26(2), 637–651. https://doi.org/10.1109/TCST.2017.2692729

    Article  Google Scholar 

  17. Yu, H., Chi, R.-H., Huang, B., & Hou, Z.-S. (2019). Extended state observer-based data-driven iterative learning control for permanent magnet linear motor with initial shifts and disturbances. IEEE Transactions on Systems, 99, 1–11. https://doi.org/10.1109/TSMC.2019.2907379

    Article  Google Scholar 

  18. Liu, S.-D., Hou, Z.-S., Tian, T.-T., Deng, Z.-D., & Li, Z.-X. (2019). A novel dual successive projection-based model-free adaptive control method and application to an autonomous car. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3444–3457. https://doi.org/10.1109/TNNLS.2019.2892327

    Article  MathSciNet  Google Scholar 

  19. Chi, R.-H., Hui, Y., Zhang, S.-H., Huang, B., & Hou, Z.-S. (2020). Discrete-time extended state observer-based model-free adaptive control via local dynamic linearization. IEEE Transactions on Industrial Electronics, 67(10), 8691–8701. https://doi.org/10.1109/TIE.2019.2947873

    Article  Google Scholar 

  20. Jin, S. -T., Hou, Z. -S., & Chi, R. -H. (2003). A novel higher-order model-free adaptive control for a class of discrete-time SISO nonlinear systems. Journal of Dynamic Systems, Measurement, and Control, 135(4): 044503. https://doi.org/10.1115/1.4023764

  21. Huang, Y., Wang, J.-Z., Shi, D.-W., & Shi, L. (2018). Performance assessment of discrete-time extended state observers: Theoretical and experimental results. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(7), 2256–2268. https://doi.org/10.1109/TCSI.2017.2780161

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, J.-Q. (2009). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  23. Gao, Z.-Q. (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 American Control Conference (pp. 4989–4996). Denver, CO, USA. https://doi.org/10.1109/ACC.2003.1242516

  24. Ohnishi, K., Shibata, M., & Murakami, T. (1996). Motion control for advanced mechatronics. IEEE/ASME Transactions on Mechatronics, 1(1), 56–67. https://doi.org/10.1109/3516.491410

    Article  Google Scholar 

  25. Han, J., Zhang, H.-G., Wang, Y.-C., & Liu, Y. (2015). Disturbance observer based fault estimation and dynamic output feedback fault tolerant control for fuzzy systems with local nonlinear models. ISA Transactions, 59, 114–124. https://doi.org/10.1016/j.isatra.2015.08.015

    Article  Google Scholar 

  26. Zhang, H.-G., Han, J., Luo, C.-M., & Wang, Y.-C. (2017). Fault-tolerant control of a nonlinear system based on generalized fuzzy hyperbolic model and adaptive disturbance observer. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(8), 2289–2300. https://doi.org/10.1109/TSMC.2017.2652499

    Article  Google Scholar 

  27. Rivera, D. E., Morarl, M., & Skogestad, S. (1986). Internal model control: Pid controller design. Industrial and Engineering Chemistry Process Design and Development, 25(1), 252–265. https://doi.org/10.1021/i200032a041

    Article  Google Scholar 

  28. Lee, Y., Park, S., & Lee, M. (1998). Pid controller tuning to obtain desired closed loop responses for cascade control systems. Industrial and Engineering Chemistry Research, 31(11), 613–618. https://doi.org/10.1016/S1474-6670(17)44994-9

    Article  Google Scholar 

  29. Fruehauf, P. S., Chien, I. L., & Lauritsen, M. D. (1994). Simplified IMC-PID tuning rules. ISA Transactions, 31(1), 43–59. https://doi.org/10.1016/0019-0578(94)90035-3

    Article  Google Scholar 

  30. Guo, C. (2012). Adaptive control theory and applications for nonlinear systems. Beijing: Science Press.

    Google Scholar 

  31. Zhong, S., Huang, Y., & Guo, L. (2020). A parameter formula connecting PID and ADRC. Science China Information Sciences, 63(9), 175–187. https://doi.org/10.1007/s11432-019-2712-7

    Article  MathSciNet  Google Scholar 

  32. Zeng, Z.-Z., & Liu, W.-J. (2019). Self-coupling PID controllers. Acta Automatica Sinica, 47(2), 404–422. https://doi.org/10.16383/j.aas.c180290

    Article  MATH  Google Scholar 

  33. Hebertt, S.-R., William, Z.-B.E., & Huang, C.-Z. (2020). Equivalence among flat filters, dirty derivative-based PID controllers, ADRC, and integral reconstructor-based sliding mode control. IEEE Transactions on Control Systems Technology, 28(5), 1696–1710. https://doi.org/10.1109/TCST.2019.2919822

    Article  Google Scholar 

  34. Jin, H.-Y., Song, J.-C., Lan, W.-Y., & Gao, Z.-Q. (2020). On the characteristics of ADRC: A PID interpretation. Journal of Science China Information Sciences, 101, 281–294. https://doi.org/10.1007/s11432-018-9647-6

    Article  Google Scholar 

  35. Nie, Z.-Y., Zhu, C., Wang, Q.-G., Gao, Z.-Q., Shao, H., & Luo, J.-L. (2020). Design, analysis and application of a new disturbance rejection PID for uncertain systems. ISA Transactions, 28(5), 1696–1710. https://doi.org/10.1016/j.isatra.2020.01.022

    Article  Google Scholar 

  36. Nie, Z.-Y., Wang, Q.-G., She, J.-H., Liu, R.-J., & Guo, D.-S. (2019). New results on the robust stability of control systems with a generalized disturbance observer. Asian Journal of Control, 22(6), 2463–2475. https://doi.org/10.1002/asjc.2188

    Article  MathSciNet  Google Scholar 

  37. Li, G.-M., Nie, Z.-Y., Li, Z.-Y., Zheng, Y.-M., & Luo, J.-L. (2020). Disturbance rejection PID control of wheeled mobile robot under non-equilibrium load. Control Theory & Applications, 38(3), 398–406. https://doi.org/10.7641/CTA.2020.00237

    Article  MATH  Google Scholar 

  38. Nie, Z.-Y., Li, Z.-Y., Wang, Q.-G., Gao, Z.-Q., & Luo, J.-L. (2021). A unifying Ziegler–Nichols tuning method based on active disturbance rejection. International Journal of Robust and Nonlinear Control, 32(18), 9525–9541. https://doi.org/10.1002/rnc.5848

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo-Yun Nie.

Additional information

This work was supported in part by Huaqiao University (Z14Y0002), in part by the Natural Science Foundation of Fujian Province (2019J01053). Qing-Guo Wang acknowledges the financial support of BNU Talent seed fund, UIC Start-up Fund (R72021115), Guangdong Key Lab of AI and Multi-modal Data Processing (2020KSYS007), the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science (2022B1212010006), Guangdong Higher Education Upgrading Plan 2021–2025 (R0400001-22, R0400025-21), UIC, China, which partially funded his research on this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, ZY., Li, GM., Yan, LC. et al. On disturbance rejection proportional–integral–differential control with model-free adaptation. Control Theory Technol. 21, 34–45 (2023). https://doi.org/10.1007/s11768-022-00125-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00125-8

Keywords

Navigation