Skip to main content
Log in

Tuning and implementation variants of discrete-time ADRC

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Practical implementations of active disturbance rejection control (ADRC) will almost always take place in discretized form. Since applications may have quite different needs regarding their discrete-time controllers, this article summarizes and extends the available set of ADRC implementations to provide a suitable variant for as many as possible use cases. In doing so, the gap between quasi-continuous and discrete-time controller tuning is closed for applications with low sampling frequencies. The main contribution of this article is the derivation of three different discrete-time implementations of error-based ADRC. It is shown that these are almost one-to-one counterparts of existing output-based implementations, to the point where transfer functions and coefficients can be reused in unaltered form. In this way, error-based implementations become firmly rooted in the established landscape of discrete-time ADRC. Furthermore, it becomes possible to equip error-based variants with windup protection abilities known from output-based ADRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. For output-based ADRC, this is a replication of the example in [18].

References

  1. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  2. Zheng, Q., & Gao, Z. (2010). On practical applications of active disturbance rejection control. Proceedings of the 29th Chinese Control Conference (pp. 6095–6100).

  3. Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: Some recent experimental and industrial case studies. Control Theory and Technology, 16(4), 301–313. https://doi.org/10.1007/s11768-018-8142-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Talole, S. E. (2018). Active disturbance rejection control: Applications in aerospace. Control Theory and Technology, 16, 314–323. https://doi.org/10.1007/s11768-018-8114-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Fareh, R., Khadraoui, S., Abdallah, M. Y., Baziyad, M., & Bettayeb, M. (2021). Active disturbance rejection control for robotic systems: A review. Mechatronics, 80, 102671. https://doi.org/10.1016/j.mechatronics.2021.102671

    Article  Google Scholar 

  6. Gao, Z. (2006). Active disturbance rejection control: A paradigm shift in feedback control system design. Proceedings of the 2006 American Control Conference (pp. 2399–2405). https://doi.org/10.1109/ACC.2006.1656579

  7. Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. Proceedings of the 2003 American Control Conference (pp. 4989–4996). https://doi.org/10.1109/ACC.2003.1242516

  8. Miklosovic, R., Radke, A., & Gao, Z. (2006). Discrete implementation and generalization of the extended state observer. Proceedings of the 2006 American Control Conference (pp. 2209–2214). https://doi.org/10.1109/ACC.2006.1656547

  9. Madonski, R., Gao, Z., & Łakomy, K. (2015). Towards a turnkey solution of industrial control under the active disturbance rejection paradigm. 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (pp. 616–621). https://doi.org/10.1109/SICE.2015.7285478

  10. Herbst, G. (2016). Practical active disturbance rejection control: Bumpless transfer, rate limitation, and incremental algorithm. IEEE Transactions on Industrial Electronics, 63(3), 1754–1762. https://doi.org/10.1109/TIE.2015.2499168

    Article  Google Scholar 

  11. Madonski, R., & Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56, 18–27. https://doi.org/10.1016/j.isatra.2014.11.008

    Article  Google Scholar 

  12. Fu, C., & Tan, W. (2016). Tuning of linear ADRC with known plant information. ISA Transactions, 65, 384–393. https://doi.org/10.1016/j.isatra.2016.06.016

    Article  Google Scholar 

  13. Zhou, R., & Tan, W. (2019). Analysis and tuning of general linear active disturbance rejection controllers. IEEE Transactions on Industrial Electronics, 66(7), 5497–5507. https://doi.org/10.1109/TIE.2018.2869349

    Article  Google Scholar 

  14. Tian, G., & Gao, Z. (2007). Frequency response analysis of active disturbance rejection based control system. IEEE International Conference on Control Applications (pp.1595–1599). https://doi.org/10.1109/CCA.2007.4389465

  15. Huang, C., & Gao, Z. (2013). On transfer function representation and frequency response of linear active disturbance rejection control. Proceedings of the 32th Chinese Control Conference (pp. 72–77)

  16. Zheng, Q., & Gao, Z. (2016). Active disturbance rejection control: Between the formulation in time and the understanding in frequency. Control Theory and Technology, 14(3), 250–259. https://doi.org/10.1007/s11768-016-6059-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Herbst, G. (2021). Transfer function analysis and implementation of active disturbance rejection control. Control Theory and Technology, 19, 19–34. https://doi.org/10.1007/s11768-021-00031-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Herbst, G. (2021). A minimum-footprint implementation of discrete-time ADRC. 2021 European Control Conference (ECC) (pp. 107–112). https://doi.org/10.23919/ECC54610.2021.9655120

  19. Michałek, M.M. (2016). Robust trajectory following without availability of the reference time-derivatives in the control scheme with active disturbance rejection. Proceedings of the 2016 American Control Conference (pp. 1536–1541). https://doi.org/10.1109/ACC.2016.7525134

  20. Mandali, A., Dong, L., & Morinec, A. (2020). Robust controller design for automatic voltage regulation. Proceedings of the 2020 American Control Conference (pp. 2617–2622). https://doi.org/10.23919/ACC45564.2020.9147208

  21. Lechekhab, T. E., Manojlović, S. M., Stanković, M. R., Madonski, R., & Simić, S. M. (2021). Robust error-based active disturbance rejection control of a quadrotor. Aircraft Engineering and Aerospace Technology, 93(1), 89–104. https://doi.org/10.1108/AEAT-12-2019-0266

    Article  Google Scholar 

  22. Madonski, R., Łakomy, K., & Yang, J. (2021). Simplifying ADRC design with error-based framework: Case study of a DC-DC buck power converter. Control Theory and Technology, 19, 94–112. https://doi.org/10.1007/s11768-021-00035-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, T., Hu, G., Yan, Y., Zeng, D., & Meng, Z. (2022). Combined feedforward and error-based active disturbance rejection control for diesel particulate filter thermal regeneration. ISA Transactions. https://doi.org/10.1016/j.isatra.2022.09.013

    Article  Google Scholar 

  24. Madonski, R., Herbst, G., & Stankovic, M. (2023). ADRC in output and error form: Connection, equivalence, performance. Control Theory and Technology. https://doi.org/10.1007/s11768-023-00129-y

    Article  Google Scholar 

  25. Madonski, R., Shao, S., Zhang, H., Gao, Z., Yang, J., & Li, S. (2019). General error-based active disturbance rejection control for swift industrial implementations. Control Engineering Practice, 84, 218–229. https://doi.org/10.1016/j.conengprac.2018.11.021

    Article  Google Scholar 

  26. Åström, K. J., & Murray, R. M. (2021). Feedback Systems: An Introduction for Scientists and Engineers. Princeton, NJ, USA: Princeton University Press.

    MATH  Google Scholar 

  27. Herbst, G. (2013). A simulative study on active disturbance rejection control (ADRC) as a control tool for practitioners. Electronics, 2(3), 246–279. https://doi.org/10.3390/electronics2030246

    Article  Google Scholar 

  28. Franklin, G. F., Workman, M. L., & Powell, D. (1997). Digital Control of Dynamic Systems. Boston, MA, USA: Addison-Wesley Longman Publishing.

    MATH  Google Scholar 

  29. Miklosovic, R., & Radke, A. (2007). High performance tracking control for the practitioner. Proceedings of the 2007 American Control Conference, pp. 3009–3014. https://doi.org/10.1109/ACC.2007.4283051

  30. Zhang, Y., Zhang, Y., Wang, J., & Ma, R. (2013). An active disturbance rejection control of induction motor using DSP+FPGA. 25th Chinese Control and Decision Conference (CCDC) (pp. 4047–4052). https://doi.org/10.1109/CCDC.2013.6561659

  31. Stanković, M. R., Manojlović, S. M., Simić, S. M., Mitrović, S. T., & Naumović, M. B. (2016). FPGA system-level based design of multi-axis ADRC controller. Mechatronics, 40, 146–155. https://doi.org/10.1016/j.mechatronics.2016.10.005

    Article  Google Scholar 

  32. Ahi, B., & Nobakhti, A. (2018). Hardware implementation of an ADRC controller on a gimbal mechanism. IEEE Transactions on Control Systems Technology, 26(6), 2268–2275. https://doi.org/10.1109/TCST.2017.2746059

    Article  Google Scholar 

  33. Desai, R., Patre, B.M., & Pawar, S.N. (2018). Active disturbance rejection control with adaptive rate limitation for process control application. 2018 Indian Control Conference (ICC) (pp. 131–136). https://doi.org/10.1109/INDIANCC.2018.8307966

  34. Ramírez-Neria, M., Luviano-Juárez, A., Lozada-Castillo, N., Ochoa-Ortega, G., & Madonski, R. (2020). Discrete-time active disturbance rejection control: A delta operator approach. In A. Bartoszewicz, J. Kabziński, J. Kacprzyk (Eds.), Advanced, Contemporary Control (pp. 1383–1395). Cham, Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-50936-1_115

  35. Peng, Y., Vrančič, D., & Hanus, R. (1996). Anti-windup, bumpless, and conditioned transfer techniques for PID controllers. IEEE Control Systems Magazine, 16(4), 48–57. https://doi.org/10.1109/37.526915

    Article  Google Scholar 

  36. Åström, K.J., & Hägglund, T. (2006). Advanced PID Control. Durham, NC, USA: ISA—The Instrumentation, Systems, and Automation Society.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Herbst.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

The work of R. Madonski was supported by the Fundamental Research Funds for the Central Universities (Project no. 21620335).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, G., Madonski, R. Tuning and implementation variants of discrete-time ADRC. Control Theory Technol. 21, 72–88 (2023). https://doi.org/10.1007/s11768-023-00127-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00127-0

Keywords

Navigation