Skip to main content
Log in

On geometric interpretation of extended state observer: a preliminary study

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Borrowing the framework of the geometric approach, this paper tries to analyze and explain why it is possible for the extended state observer (ESO) to estimate the state vector and total disturbance accurately. The geometric approach has provided an elegant and rigorous framework to redefine some key concepts in modern control theory, such as controllability and observability. Moreover, those concepts can be extended to deal with systems in the presence of inaccessible disturbances, such as controlled invariants and conditioned invariants. It is shown in this paper that the augmented system of the ESO is unknown-state unknown-input completely reconstructable in finite time interval. A numerical simulation is given to verify the state vector and total disturbance can be estimated accurately by the ESO if the augmented system is unknown-state unknown-input completely reconstructable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Åström, K. J., & Kumar, P. R. (2014). Control: A perspective. Automatica, 50(1), 3–43.

    Article  MathSciNet  MATH  Google Scholar 

  2. Brockett, R. (2001). New issues in the mathematics of control. In D. Priya (Ed.), Mathematics unlimited-2001 and beyond (pp. 189–219). Berlin: Springer.

    Chapter  Google Scholar 

  3. Tsien, H. S., & Qian, X. (1954). Engineering cybernetics. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  4. Xie, L.-L., & Guo, L. (2000). How much uncertainty can be dealt with by feedback? IEEE Transactions on Automatic Control, 45(12), 2203–2217.

    Article  MathSciNet  MATH  Google Scholar 

  5. Stein, G. (2003). Respect the unstable. IEEE Control Systems Magazine, 23(4), 12–25.

    Article  Google Scholar 

  6. Gao, Z. (2014). On the centrality of disturbance rejection in automatic control. ISA Transactions, 53(4), 850–857.

    Article  Google Scholar 

  7. Zhou, K., & Doyle, J. C. (1998). Essentials of robust control. Englewood Cliffs, NJ, USA: Prentice Hall.

    MATH  Google Scholar 

  8. Edwards, C., & Spurgeon, S. (1998). Sliding mode control: theory and applications. London: CRC Press.

    Book  MATH  Google Scholar 

  9. Krstic, M., Kokotovic, P. V., & Kanellakopoulos, I. (1995). Nonlinear and adaptive control design. New York, NY, USA: Wiley.

    MATH  Google Scholar 

  10. Han, J. (2009). From pid to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.

    Article  Google Scholar 

  11. Chen, W.-H., Yang, J., Guo, L., & Li, S. (2015). Disturbance-observer-based control and related methods-an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095.

    Article  Google Scholar 

  12. Sariyildiz, E., Oboe, R., & Ohnishi, K. (2019). Disturbance observer-based robust control and its applications: 35th anniversary overview. IEEE Transactions on Industrial Electronics, 67(3), 2042–2053.

    Article  Google Scholar 

  13. Basile, G., & Marro, G. (1969). On the observability of linear, time-invariant systems with unknown inputs. Journal of Optimization Theory and Applications, 3(6), 410–415.

    Article  MathSciNet  MATH  Google Scholar 

  14. Wonham, W. M., & Morse, A. S. (1970). Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM Journal on Control, 8(1), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  15. Morse, A. S., & Wonham, W. M. (1970). Decoupling and pole assignment by dynamic compensation. SIAM Journal on Control, 8(3), 317–337.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalman, R.E. (1960). On the general theory of control systems. In: Proceedings First International Conference on Automatic Control, Moscow, USSR, pp. 481–492 .

  17. Basile, G., & Marro, G. (1992). Controlled and conditioned invariants in linear system theory. Englewood Cliffs, NJ, USA: Prentice Hall.

    MATH  Google Scholar 

  18. Isidori, A. (1995). Nonlinear control systems. 3rd edition. London: Springer.

    Book  MATH  Google Scholar 

  19. Chen, J., Gao, Z., Hu, Y., Shao, S. (2022). On the relationship between extended state observer and unknown input observer. arXiv preprint. arXiv:2208.12314.

  20. Hou, M., & Patton, R. J. (1998). Input observability and input reconstruction. Automatica, 34(6), 789–794.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ansari, A., & Bernstein, D. S. (2019). Deadbeat unknown-input state estimation and input reconstruction for linear discrete-time systems. Automatica, 103, 11–19.

    Article  MathSciNet  MATH  Google Scholar 

  22. Willems, J. (1982). Almost invariant subspaces: An approach to high gain feedback design-part ii: Almost conditionally invariant subspaces. IEEE Transactions on Automatic Control, 27(5), 1071–1085.

    Article  MathSciNet  MATH  Google Scholar 

  23. Hovakimyan, N., Cao, C. (2010). \(\cal{L} _1\) adaptive control theory: Guaranteed robustness with fast adaptation. IEEE Control Systems Magazine, 31(5), 112–114.

  24. Chen, W.-H., Ballance, D. J., Gawthrop, P. J., & O’Reilly, J. (2000). A nonlinear disturbance observer for robotic manipulators. IEEE Transactions on Industrial Electronics, 47(4), 932–938.

    Article  Google Scholar 

  25. Chen, J., Hu, Y., & Gao, Z. (2021). On practical solutions of series elastic actuator control in the context of active disturbance rejection. Advanced Control for Applications, 3(2), 69.

    Article  Google Scholar 

  26. Imai, H., & Akashi, H. (1981). Disturbance localization and pole shifting by dynamic compensation. IEEE Transactions on Automatic Control, 26(1), 226–235.

  27. Willems, J. C., & Commault, C. (1981). Disturbance decoupling by measurement feedback with stability or pole placement. SIAM Journal on Control and Optimization, 19(4), 490–504.

    Article  MathSciNet  MATH  Google Scholar 

  28. Padula, F., & Ntogramatzidis, L. (2019). On the well-posedness in the solution of the disturbance decoupling by dynamic output feedback with self bounded and self hidden subspaces. Automatica, 106, 315–326.

  29. Padula, F., & Ntogramatzidis, L. (2020). Fixed poles in the disturbance decoupling by dynamic output feedback for systems with direct feedthrough matrices. Automatica, 121, 109159.

    Article  MathSciNet  MATH  Google Scholar 

  30. Willems, J. (1981). Almost invariant subspaces: An approach to high gain feedback design–Part I: Almost controlled invariant subspaces. IEEE Transactions on Automatic Control, 26(1), 235–252.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Gao, Z. On geometric interpretation of extended state observer: a preliminary study. Control Theory Technol. 21, 89–96 (2023). https://doi.org/10.1007/s11768-023-00130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00130-5

Keywords

Navigation