Skip to main content
Log in

On tuning of ADRC with competing design indices: a quantitative study

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

Controller optimization has mostly been done by minimizing a certain single cost function. In practice, however, engineers must contend with multiple and conflicting considerations, denoted as design indices (DIs) in this paper. Failure to account for such complexity and nuances is detrimental to the applications of any advanced control methods. This paper addresses this challenge heads on, in the context of active disturbance rejection controller (ADRC) and with four competing DIs: stability margins, tracking, disturbance rejection, and noise suppression. To this end, the lower bound for the bandwidth of the extended state observer is first established for guaranteed closed-loop stability. Then, one by one, the mathematical formula is meticulously derived, connecting each DI to the set of controller parameters. To our best knowledge, this has not been done in the context of ADRC. Such formulas allow engineers to see quantitatively how the change of each tuning parameter would impact all of the DIs, thus making the guesswork obsolete. An example is given to show how such analytical methods can help engineers quickly determine controller parameters in a practical scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.

    Article  Google Scholar 

  2. Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: Some recent experimental and industrial case studies. Control Theory and Technology, 16, 301–313.

    Article  MathSciNet  MATH  Google Scholar 

  3. Sira-Ramirez,, H., Linares-Flores, J., Garca-Rodrguez, C., & Contreras-Ordaz, M. (2014). On the control of the permanent magnet synchronous motor: An active disturbance rejection control approach. IEEE Transactions on Control Systems Technology, 22(5), 2056–2063.

  4. Huang, Y., & Su, J. B. (2020). Output feedback stabilization of uncertain nonholonomic systems with external disturbances via active disturbance rejection control. ISA Transactions, 104(1), 245–254.

    Article  Google Scholar 

  5. Sun, L., Zhang, Y. Q., Li, D. H., & Lee, Y. K. (2019). Tuning of active disturbance rejection control with application to power plant furnace regulation. Control Engineering Practice, 92, 104122.

    Article  Google Scholar 

  6. Li, J., Zhang, L. Y., Li, S. Q., Mao, Q. B., & Mao, Y. (2023). Active disturbance rejection control for piezoelectric smart structures: A review. Machines, 11(2), 174.

    Article  Google Scholar 

  7. Li, S. H., Yang, J., Chen, W. H., & Chen, X. S. (2012). Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics, 59(12), 4792–4802.

    Article  Google Scholar 

  8. Geng, X. P., Hao, S. L., Liu, T., & Zhong, C. Q. (2019). Generalized predictor based active disturbance rejection control for non-minimum phase systems. ISA Transactions, 87, 34–45.

    Article  Google Scholar 

  9. Lakomy, K., & Madonski, R. (2021). Cascade extended state observer for active disturbance rejection control applications under measurement noise. ISA Transactions, 109, 1–10.

    Article  Google Scholar 

  10. Liu, Y. F., Liu, G., Zheng, S. Q., & Li, H. T. (2022). A modified active disturbance rejection control strategy based on cascade structure with enhanced robustness. ISA Transactions, 129, 525–534.

    Article  Google Scholar 

  11. Wu, Z. L., Li, D. H., Liu, Y. H., & Chen, Y. Q. (2023). Performance analysis of improved ADRCs for a class of high-order processes with verification on main steam pressure control. IEEE Transactions on Industrial Electronics, 70(6), 6180–6190.

    Article  Google Scholar 

  12. Huang, Y., & Xue, W. C. (2014). Active disturbance rejection control: Methodology and theoretical analysis. ISA Transactions, 53(4), 963–976.

    Article  MathSciNet  Google Scholar 

  13. Guo, B. Z., & Zhao, Z. L. (2013). On convergence of the nonlinear active disturbance rejection control for MIMO Systems. SIAM Journal on Control and Optimization, 51(2), 1727–1757.

    Article  MathSciNet  MATH  Google Scholar 

  14. Xue, W. C., & Huang, Y. (2018). Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances. International Journal of Robust and Nonlinear Control, 28(4), 1456–1473.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, S., Bai, W. Y., Huang, Y., & Gao, Z. Q. (2020). On the conceptualization of total disturbance and its profound implications. Science China Information Sciences, 63(2), 221–223.

    Article  MathSciNet  Google Scholar 

  16. Zhong, S., Huang, Y., & Guo, L. (2020). A parameter formula connecting PID and ADRC. Science China Information Sciences, 63(9), 1869–1919.

    Article  MathSciNet  Google Scholar 

  17. Zhao, Y. T., & Huang, Y. (2021). On the bandwidth of the extended state observer. In The 40th Chinese control conference (pp. 241–246), Shanghai, China.

  18. Herbt, G., & Madonski, R. (2023). Tuning and implementation variants of discrete-time ADRC. Control Theory and Technology. https://doi.org/10.1007/s11768-023-00127-0

  19. Ran, M. P., Wang, Q., Dong, C. Y., & Xie, L. H. (2020). Active disturbance rejection control for uncertain time-delay nonlinear systems. Automatica, 112, 108692.

    Article  MathSciNet  MATH  Google Scholar 

  20. Skupin, P., Nowak, P., & Czeczot, J. (2022). On the stability of active disturbance rejection control for first-order plus delay time processes. ISA Transactions, 125, 179–188.

    Article  Google Scholar 

  21. Tian, G., & Gao, Z. Q. (2007). Frequency response analysis of active disturbance rejection based control system. In The 16th IEEE international conference on control applications (pp. 1595–1599), Singapore.

  22. Xue, W. C., & Huang, Y. (2015). Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 58, 133–154.

    Article  Google Scholar 

  23. Zhong, S., & Huang, Y. (2019). Comparison of the phase margins of different ADRC designs. In The 38th Chinese control conference (pp. 1255–1260), Guangzhou, China.

  24. Zhao, Y.T., & Huang, Y. (2021). Frequency properties of ADRC. In The 40th Chinese control conference (pp. 6628–6633), Shanghai, China.

  25. Zhang, B. W., Tan, W., & Li, J. (2019). Tuning of linear active disturbance rejection controller with robustness specification. ISA Transactions, 85, 237–246.

    Article  Google Scholar 

  26. Srikanth, M. V., & Yadaiah, N. (2022). Analytical tuning rules for second-order reduced ADRC with SOPDT models. ISA Transactions, 131, 693–714.

    Article  Google Scholar 

  27. Zhou, X. Y., Gao, H., Zhao, B. L., & Zhao, L. B. (2018). A GA-based parameters tuning method for an ADRC controller of ISP for aerial remote sensing applications. ISA Transactions, 81, 318–328.

    Article  Google Scholar 

  28. Yin, Z. G., Du, C., Liu, J., Sun, X. D., & Zhong, Y. R. (2018). Research on auto-disturbance-rejection control of induction motors based on an ant colony optimization algorithm. IEEE Transactions on Industrial Electronics, 65(4), 3077–3094.

    Article  Google Scholar 

  29. Li, J., Xia, Y. Q., Qi, X. H., & Gao, Z. Q. (2017). On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control. IEEE Transactions on Industrial Electronics, 64(2), 1425–1435.

    Article  Google Scholar 

  30. Chen, S., Bai, W. Y., Chen, Z. X., & Zhao, Z. L. (2020). The combination of Q-learning based tuning method and active disturbance rejection control for SISO systems with several practical factors. IFAC-PapersOnLine, 53(2), 1294–1299.

    Article  Google Scholar 

  31. Fujimoto, Y., & Kawamura, A. (1995). Robust servo-system based on two-degree-of-freedom control with sliding mode. IEEE Transactions on Industrial Electronics, 42(3), 272–280.

    Article  Google Scholar 

  32. Tan, K. K., Huang, S. N., & Lee, T. H. (2002). Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors. IEEE Transactions on Magnetics, 38(1), 221–228.

    Article  Google Scholar 

  33. Yang, X. W., Deng, W. X., & Yao, J. Y. (2022). Neural network based output feedback control for DC motors with asymptotic stability. Mechanical Systems and Signal Processing, 164, 108288.

    Article  Google Scholar 

  34. Ding, R. Z., Ding, C. Y., Xu, Y. L., Liu, W. K., & Yang, X. F. (2022). Neural network-based robust integral error sign control for servo motor systems with enhanced disturbance rejection performance. ISA Transactions, 129, 580–591.

    Article  Google Scholar 

  35. Zhao, C., & Guo, L. (2017). PID controller design for second order nonlinear uncertain systems. Science China Information Sciences, 60(2), 1869–1919.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Huang.

Additional information

This work was supported by the National Key R & D Program of China (No. 2018YFA0703800) and the National Natural Science Foundation of China (No. U20B2054).

Appendix

Appendix

Proof of Theorem 1 Considering unknown gain \(b\in [\underline{b}, \overline{b}]\), based on the analyses about the PID parameters selection manifold \(\varOmega _{pid}\) in [35] and the ESO bandwidth in [16], define

$$\begin{aligned} \varOmega _{b{\hat{b}}}=\{\omega \in R \mid {\tilde{h}}_0\omega ^4 +{\tilde{h}}_1\omega ^3 +{\tilde{h}}_2\omega ^2 +{\tilde{h}}_3\omega +{\tilde{h}}_4=0\},\nonumber \\ \end{aligned}$$
(A.1)

where \({\tilde{h}}_0{=}\frac{b^4k_{d}^2}{{\hat{b}}^4}\), \({\tilde{h}}_1{=}2\frac{b^3k_{d}}{{\hat{b}}^3}\left[ k_{d}\left( \frac{bk_{d}}{{\hat{b}}}{-}M_2\right) {+}k_{p}\left( \frac{b}{{\hat{b}}}{-}1\right) -M_1\right] ,\) \({\tilde{h}}_2=\left[ \frac{bk_{d}}{{\hat{b}}}\left( \frac{bk_{d}}{{\hat{b}}}-M_2\right) +\frac{bk_{p}}{{\hat{b}}}\left( \frac{b}{{\hat{b}}}-1\right) -\frac{bM_1}{{\hat{b}}}\right] ^2+ 2\frac{b^2k_{d}}{{\hat{b}}^2}\left( \frac{bk_{p}}{{\hat{b}}}-M_1\right) \left( \frac{bk_{d}}{{\hat{b}}}-M_2\right) -\frac{b^2M_2^2k_{p}}{{\hat{b}}^2},\) \({\tilde{h}}_3{=}2\left[ \frac{bk_{d}}{{\hat{b}}}\left( \frac{bk_{d}}{{\hat{b}}} -M_2\right) {+}\frac{bk_{p}}{{\hat{b}}}\left( \frac{b}{{\hat{b}}}{-}1\right) {-}\frac{bM_1}{{\hat{b}}}\right] \left( \frac{bk_{p}}{{\hat{b}}}-M_1\right) \left( \frac{bk_{d}}{{\hat{b}}} -M_2\right) -\frac{bM_2^2k_{p}}{{\hat{b}}}\left( \frac{bk_{d}}{{\hat{b}}}-M_2\right) ,\) \({\tilde{h}}_4=\left( \frac{bk_{p}}{{\hat{b}}}-M_1\right) ^2\left( \frac{bk_{d}}{{\hat{b}}}-M_2\right) ^2\). Then, define

$$\begin{aligned} \begin{aligned} \omega _{ob{\hat{b}}}^*&=\max \{0, \frac{\frac{{\hat{b}}M_1}{b}-k_{p}}{k_{d}}, \frac{{\hat{b}}M_2}{b}-k_{d}, {\bar{\omega }}_{ob{\hat{b}}}\},\\ {\bar{\omega }}_{ob{\hat{b}}}&= \left\{ \begin{array}{ll} 0, &{}~ \varOmega _{b{\hat{b}}}=\emptyset \text { or } \max _{\omega \in \varOmega _{b{\hat{b}}}}\omega \le 0,\\ \max _{\omega \in \varOmega _{b{\hat{b}}}}\omega , &{}~ \max _{\omega \in \varOmega _{b{\hat{b}}}}\omega >0. \end{array} \right. \end{aligned}\nonumber \\ \end{aligned}$$
(A.2)

According to Theorem 1 in [16], consider the ADRC controlled systems (1), (5) and (6), for any given \(M_1\), \(M_2\), \(k_{p}\), \(k_{d},\) b, \({\hat{b}}\), when the ESO parameter \(\omega _{o}>\omega _{ob{\hat{b}}}^* \), the states \(x_1\) and \(x_2\) will satisfy \(\lim \nolimits _{t \rightarrow \infty }x_1(t)=c\), \(\lim \nolimits _{t \rightarrow \infty }x_2(t)=0,\) for any \((x_1(0), x_2(0)) \in R^2\) and constant c. And then, for any \(b\in [\underline{b},\overline{b}]\), \(\omega _{o\underline{b}{\hat{b}}}^*\ge \omega _{ob{\hat{b}}}^*\) will be proved.

Define \(k(b,{\hat{b}})=(b{\hat{k}}_p-M_1)(b{\hat{k}}_d-M_2)-b{\hat{k}}_i- M_2\sqrt{b{\hat{k}}_i(b{\hat{k}}_d+M_2)},\) where \({\hat{k}}_p=\frac{1}{{\hat{b}}}\left( k_{p}+\omega k_{d}\right) \), \({\hat{k}}_d=\frac{1}{{\hat{b}}}(\omega + k_{d})\), \({\hat{k}}_i=\frac{1}{{\hat{b}}}\omega k_{p}.\) Thus, \(\varOmega _{b{\hat{b}}}=\{\omega \in R \mid k(b,{\hat{b}})=0\}.\)

If \(\omega _{o}>\omega _{o\underline{b}{\hat{b}}}^*\), it can be obtained that \(k(\underline{b},{\hat{b}})>0\), \(\underline{b}{\hat{k}}_p\) \(>M_1\) and \(\underline{b}{\hat{k}}_d>M_2 \). Therefore, there is \(2b{\hat{k}}_p{\hat{k}}_d{-}\) \((M_1{\hat{k}}_d{+} M_2{\hat{k}}_p){-} {\hat{k}}_i {\ge }\left( b{\hat{k}}_p{\hat{k}}_d{-}\frac{M_1M_2}{\underline{b}}\right) {+} \frac{1}{\underline{b}} \left[ (\underline{b}{\hat{k}}_p{-}M_1)(\underline{b}{\hat{k}}_d{-}M_2){-} \underline{b}{\hat{k}}_i\right] {\ge } \sqrt{{\hat{k}}_i}M_2\frac{ \sqrt{\underline{b}( \underline{b}{\hat{k}}_d{+} M_2)}}{\underline{b}}\).

The following equation can be obtained by taking the partial derivative of \(k(b,{\hat{b}})\). \(\frac{\partial k(b,{\hat{b}})}{\partial b} =2b{\hat{k}}_p{\hat{k}}_d- {\hat{k}}_i- M_2\frac{2b{\hat{k}}_i{\hat{k}}_d+ {\hat{k}}_iM_2}{2\sqrt{b{\hat{k}}_i(b{\hat{k}}_d+M_2)}} {-}(M_1{\hat{k}}_d{+} M_2{\hat{k}}_p) {\ge } \sqrt{{\hat{k}}_i}M_2\left( \sqrt{{\hat{k}}_d{+} M_2/\underline{b}}\right. \)\(\left. - \sqrt{{\hat{k}}_d+ M_2/\underline{b}} \right) \ge 0\).

In summary, \(k(b,{\hat{b}})\) is an monotone nondecreasing function with b, thus, \({\bar{\omega }}_{ob{\hat{b}}}\le {\bar{\omega }}_{o\underline{b}{\hat{b}}}\). At the meantime, it can be easily proved that \(\frac{\frac{{\hat{b}}M_1}{b}-k_{p}}{k_{d}}\le \frac{\frac{{\hat{b}}M_1}{\underline{b}}-k_{p}}{k_{d}}\), \(\frac{{\hat{b}}M_2}{b}-k_{d}\le \frac{{\hat{b}}M_2}{\underline{b}}-k_{d}.\) Hence \(\omega _{o\underline{b}{\hat{b}}}^*\ge \omega _{ob{\hat{b}}}^*\), \(\forall b\in [\underline{b},\overline{b}]\). \(\square \)

Proof of Theorem 2 The tracking error e(t) and its derivative \(e_d\) satisfy:

$$\begin{aligned} \left\{ \begin{aligned}&\dot{e}=e_d,\\&\dot{e}_d=-k_{p}e-k_{d}e_d+e_f, \end{aligned} \right. \end{aligned}$$

thus, \(|\ddot{e}(t) + k_{d}\dot{e}(t) + k_{p}e(t)|= |e_f (t)|\). From Theorem 1, when \(\omega _{o}>\omega _{o\underline{b}{\hat{b}}}^*\), \(e_f\), e and \(e_d\) are bounded.

Consider the Lyapunov function:

$$\begin{aligned} V_1=[e,e_d]P \left[ \begin{array}{lcr} e \\ e_d \end{array} \right] , \text { where } P= \left[ \begin{array}{lcr} \frac{1+k_{p}}{2k_{d}}+\frac{k_{d}}{2k_{p}} &{} \frac{1}{2k_{p}} \\ \frac{1}{2k_{p}} &{} \frac{1+k_{p}}{2k_{d}k_{p}} \end{array} \right] . \end{aligned}$$

Thus, \(\dot{V}_1(e,e_d)\le -\frac{V_1}{\lambda _{\max }(P)}+\frac{\max \left( \frac{1}{k_{p}},\frac{1+k_{p}}{k_{d}k_{p}}\right) \sqrt{V_1}|e_f|}{\sqrt{\lambda _{\textrm{min}}(P)}}.\) When \(\sqrt{V_1}\ge \frac{\max \left( \frac{1}{k_{p}},\frac{1+k_{p}}{k_{d}k_{p}}\right) \lambda _{\max }(P)\textrm{sup}|e_f|}{\sqrt{\lambda _{\textrm{min}}(P)}}\), there is \(\dot{V}_1 < 0\). Hence, \(\sqrt{V_1}\le \frac{\max \left( \frac{1}{k_{p}},\frac{1+k_{p}}{k_{d}k_{p}}\right) \lambda _{\max }(P)sup|e_f|}{\sqrt{\lambda _{\textrm{min}}(P)}},\) i.e., \(\Vert [e,e_d]\Vert \le \frac{\max \left( \frac{1}{k_{p}},\frac{1+k_{p}}{k_{d}k_{p}}\right) \lambda _{\max }(P)\textrm{sup}|e_f|}{\lambda _{\textrm{min}}(P)}.\)

Moreover, the estimation error \(e_f\) of the ESO (5) satisfies the equation \(\dot{e}_f=-\omega _oe_f-\dot{{\tilde{f}}}.\) Since \(\dot{f}=\frac{\partial f}{\partial x_2}k_{p}e+\left( \frac{\partial f}{\partial x_2}k_{d}- \frac{\partial f}{\partial x_1}\right) e_d- \frac{\partial f}{\partial x_2}e_f+ \frac{\partial f}{\partial x_1} \dot{v}+\frac{\partial f}{\partial x_2}\ddot{v}\), \(e_f\) satisfies \(\dot{e}_f=-\left[ \frac{\partial f}{\partial x_2}k_{p}-\left( \frac{b}{{\hat{b}}}-1\right) k_{d}k_{p}\right] e -\left[ \left( \frac{b}{{\hat{b}}}-1\right) k_{d}+\frac{b}{{\hat{b}}}\omega _o-\frac{\partial f}{\partial x_2}\right] \)\(e_f -\frac{\partial f}{\partial x_1} \dot{v}-\frac{\partial f}{\partial x_2}\ddot{v}-(\frac{b}{{\hat{b}}}-1){\dddot{v}}-b\frac{\partial d(t)}{\partial t}-[\frac{\partial f}{\partial x_2}k_{d}- \frac{\partial f}{\partial x_1}+(\frac{b}{{\hat{b}}}-1)(k_{p}-k_{d}^2)]e_d.\)

Denote \({\hat{h}}=\max \{|\frac{\underline{b}}{{\hat{b}}}-1|,|\frac{\overline{b}}{{\hat{b}}}-1|\}\), \(\gamma _1= {\hat{h}}k_{p}k_{d}+M_2k_{p}, \gamma _2= M_2k_{d}+M_1+{\hat{h}}|k_{p}-k_{d}^2|, \gamma _3= \sup _{t>0}\{|M_1\dot{v}|+ |M_2\ddot{v}|+ |{\hat{h}}\dddot{v}|+|\overline{b}M_3|\}\). According to (3), \(\gamma _3<\infty \).

Consider the Lyapunov function \(V_2(e_f)=\frac{1}{2}e_f^2,\) for all \(f\in \mathcal {F}\) and \( d(t) \in \mathcal {D}\), there is

$$\begin{aligned} \dot{V}_2(e_f)\le & {} -(-{\hat{h}}k_{d}+\frac{\underline{b}}{{\hat{b}}}\omega _o- M_2)e_f^2\nonumber \\{} & {} +|e_f|(\gamma _1|e|+ \gamma _2|e_d|+ \gamma _3). \end{aligned}$$
(B.1)

Denote \(\gamma _4= \frac{\max \left( \frac{1}{k_{p}},\frac{1+k_{p}}{k_{d}k_{p}}\right) \lambda _{\max }(P)}{\lambda _\textrm{min} (P)}\), \(\omega _{o1}^*=\max \{\omega _{o\underline{b}{\hat{b}}}^*,\) \([{\hat{h}}k_{ad}+ M_2+\gamma _4(\gamma _1+\gamma _2)+1]\frac{{\hat{b}}}{\underline{b}}\}\), \(\gamma _5= \max \{e_f(0), \gamma _3\}\). Next, it will be proved that \(\textrm{sup}|e_f|\le \gamma _5\) when \(\omega _o> \omega _{o1}^*\).

When \(\omega _o> \omega _{o1}^*\), from (B.1), \(\dot{V}_2(e_f)\le -\left[ \gamma _4(\gamma _1+\gamma _2)\right. \)\(\left. {+}1\right] |e_f|^2 {+} |e_f|\left[ \gamma _4(\gamma _1{+} \gamma _2) sup|e_f|{+} \gamma _3\right] \), when \(\textrm{sup}|e_f|>\gamma _5\), there is \(\exists |{\hat{e}}_f|\in (\gamma _5, \textrm{sup}|e_f|),\) \(\dot{V}_2({\hat{e}}_f)<0\), thus, \(\forall t>0\), \(|e_f(t)|\) \(\le \) \(|{\hat{e}}_f|<\textrm{sup}|e_f|\). This contradicts the definition of \(\textrm{sup}|e_f|\), thus, \(\textrm{sup}|e_f|\le \gamma _5\).

On the other hand, based on Theorem 1, when \(\omega _{o\underline{b}{\hat{b}}}^*\le \omega _o\le \omega _{o1}^*\), \(\exists \gamma _6 \in R\), such that \(|e_f(t)|\le \gamma _6, |e(t)|\le \gamma _6\) and \( |e_d(t)|\le \gamma _6\).

Denote \(\gamma _7= [\gamma _4(\gamma _1+\gamma _2)+{\hat{h}}k_{d}+M_2 ]\max \{\gamma _5, \gamma _6\}+\gamma _3\). It can be deduced that from the above analyses:

$$\begin{aligned} \begin{aligned} \dot{V}_2(e_f)&\le -\frac{\underline{b}}{{\hat{b}}}\omega _oe_f^2+({\hat{h}}k_{d}+M_2)e_f^2\\&\quad +|e_f|(\gamma _1|e|+ \gamma _2|e_d|+ \gamma _3)\\&\le -\frac{2\underline{b}}{{\hat{b}}}\omega _oV_2+ \sqrt{2}\sqrt{V_2}\gamma _7,t\ge 0. \end{aligned} \end{aligned}$$
(B.2)

Thus, \(\sqrt{V_2}\le e^{-\frac{\underline{b}}{{\hat{b}}}\omega _ot}\sqrt{V_1(e_f(0))}+ \frac{\sqrt{2} {\hat{b}}\gamma _7}{2\underline{b}\omega _o} (1-e^{-\frac{\underline{b}}{{\hat{b}}}\omega _ot})\). Therefore, \(|e_f|\le (|e_f(0)|-\frac{\eta _0}{\omega _o})e^{-\frac{\underline{b}}{{\hat{b}}}\omega _ot}+ \frac{\eta _0}{\omega _o}\), where \(\eta _0= \frac{ {\hat{b}}\gamma _7}{\underline{b}} \), which is irrelevant to \(\omega _o\).

Furthermore, from Theorem 1, \(\forall \varepsilon >0\), \(\exists T>0\), such that \(\dot{{\tilde{f}}}=(\frac{b}{{\hat{b}}}-1)\omega _oe_f+O(\varepsilon )\) as long as \(t>T\). Thus, \(\forall t>T\), \(\dot{V}_2(e_f) \le -\frac{2\underline{b}}{{\hat{b}}}\omega _oV_2+ \sqrt{2}\sqrt{V_2}O(\varepsilon ),t\ge 0\). Therefore, \(|e_f|\le (|e_f(0)|-\frac{O(\varepsilon )}{\omega _o})e^{-\frac{\underline{b}}{{\hat{b}}}\omega _ot}+ \frac{O(\varepsilon )}{\omega _o}.\)

Define \(\eta (t)= \left\{ \begin{array}{ll} \eta _0, &{}t\le T,\\ O(\varepsilon ), &{} t>T. \end{array} \right. \) Theorem 2 is obtained. \(\square \)

Proof of Theorem 3 When parameters in ADRC \(k_p\), \(k_d\), \(\omega _o\), \({\hat{b}}\) satisfy:

$$\begin{aligned} \frac{{\hat{b}}M_1}{\underline{b}(k_p+ \omega _ok_d)}=\textrm{o}(1), \frac{{\hat{b}}M_2}{\underline{b}(\omega _o+ k_d)}=\textrm{o}(1), \omega _o>{\hat{b}}, \end{aligned}$$
(C.1)

there is \(G_v(s)\thickapprox \frac{(s+\omega _o)(s^2+k_ds+k_p)}{\frac{{\hat{b}}}{b}s^3+ (\omega _o+k_d)s^2+ (\omega _ok_d+ k_p)s +\omega _ok_p}\),

(1) If \(b={\hat{b}}\), \(G_v(s)=\frac{1}{1+\textrm{o}(1)} \thickapprox 1\).

(2) If \(b\ne {\hat{b}}\), replacing s with \(j\omega \), it can be obtained that \(G_v(j\omega )=\frac{\omega _ok_p- (\omega _o+ k_d)\omega ^2+ j\omega (-\omega ^2+\omega _ok_d+ k_p)}{\delta (j\omega )}\), \(\delta (j\omega )=\omega _ok_p- [\omega _\textrm{o}(1+\textrm{o}(1)) + k_d]\omega ^2 + j\omega [\omega _ok_d(1+\textrm{o}(1))+ k_p- \frac{{\hat{b}}}{b}\omega ^2]\).

(i) If \(\overline{b}\ge b> {\hat{b}}\), when \(\omega \le (\frac{\omega _ok_d+k_p}{11-10*\frac{{\hat{b}}}{\overline{b}}})^{\frac{1}{2}}\triangleq A_1(\omega _o,{\hat{b}})\), \({\hat{b}}\in [\underline{b}, \overline{b}]\), there is \(\delta (j\omega )=\omega _ok_p- [\omega _{\textrm{o}}(1+\textrm{o}(1)) + k_d]\omega ^2 + j\omega [\omega _ok_d(1+\textrm{o}(1))+ k_p-\omega ^2](1+\textrm{o}(1))\), thus, \(G_v(j\omega )=\frac{1}{1+\textrm{o}(1)+\textrm{o}(1)j} \thickapprox 1\).

(ii) If \(\underline{b}\le b< {\hat{b}}\), when \(\omega \le (\frac{\omega _ok_d+k_p}{10*\frac{{\hat{b}}}{\underline{b}}-9})^{\frac{1}{2}}\triangleq A_2(\omega _o,{\hat{b}})\), \({\hat{b}}\in [\underline{b}, \overline{b}]\), there is \(G_v(j\omega )=\frac{1}{1+\textrm{o}(1)+\textrm{o}(1)j} \thickapprox 1\).

Denote \(\omega _{b}(\omega _o,{\hat{b}})= \min \{A_1(\omega _o,{\hat{b}}),A_2(\omega _o,{\hat{b}})\}, {\hat{b}}\in [\underline{b},\overline{b}].\) In summary, for any \(b \in [\underline{b}, \overline{b}]\), if \(\omega \le \omega _{b}(\omega _o,{\hat{b}})\), there is \(G_v(j\omega )=\frac{1}{1+\textrm{o}(1)+\textrm{o}(1)j} \thickapprox 1\).

Next, the effect of \({\hat{b}}\) on \(\min \{A_1(\omega _o,{\hat{b}}),A_2(\omega _o,{\hat{b}})\}\) is discussed. Given \(\underline{b}\), \(\overline{b}\), \(\omega _o\), \(k_d\), \(k_p\), according to \(A_1(\omega _o,{\hat{b}})\) and \( A_2(\omega _o,{\hat{b}})\), when \({\hat{b}}\) decreases, \(A_1(\omega _o,{\hat{b}})\) decreases and \(A_2(\omega _o,{\hat{b}})\) increases; when \({\hat{b}}\) increases, \(A_1(\omega _o,{\hat{b}})\) increases and \(A_2(\omega _o,{\hat{b}})\) decreases. If \(A_1(\omega _o,{\hat{b}})= A_2(\omega _o,{\hat{b}})\), there is \({\hat{b}}=b^*=\frac{2\underline{b}\overline{b}}{ \underline{b}+ \overline{b}}\), by a simple calculation, there is \(\underline{b} \le b^*\le \frac{\underline{b}+\overline{b}}{2}\), take “=” if and only if \(\underline{b}=\overline{b}\), at the same time, \(A_1(\omega _o,b^*)= A_2(\omega _o,b^*)= \left[ \frac{(\omega _ok_d+k_p)(\underline{b}+\overline{b})}{11\overline{b} -9\underline{b}}\right] ^{\frac{1}{2}}\triangleq A_3(\omega _o)\). It is easy to get \(A_3(\omega _o)= \omega _b(\omega _o,b^*) \ge \omega _b(\omega _o,{\hat{b}})\) for any \({\hat{b}}\in [\underline{b},\overline{b}]\).

According to the above analyses, when \({\hat{b}}=b^*\), \(G_v(j\omega )=\frac{1}{1+\textrm{o}(1)+\textrm{o}(1)j} \thickapprox 1\) for \(0< \omega \le A_3(\omega _o)\). Moreover, \(\omega _{b}(\omega _o,{\hat{b}})\) can be rewritten as follows:\(\omega _{b}(\omega _o,{\hat{b}}) = \left\{ \begin{aligned} A_1(\omega _o,{\hat{b}})&, {\hat{b}}\in [\underline{b},b^*],\\ A_2(\omega _o,{\hat{b}})&, {\hat{b}}\in [b^*,\overline{b}]. \end{aligned} \right. \)

Therefore, it indicates that the reference input could be well tracked by the controlled output in the low frequency band. \(\square \)

Proof of Theorem 4 First of all, solve for the crossover frequency \(\omega _c\): \(|L(j\omega _c)|=1.\) Replacing s with \(j\omega \), it can be obtained that \(L(j\omega )=\frac{b}{{\hat{b}}}\frac{\omega _ok_p-(\omega _o+k_d)\omega ^2 +j(k_p+\omega _ok_d)\omega }{a_2\omega ^2-j(a_1+\omega ^2)\omega }\). When parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\)) satisfy:

$$\begin{aligned}{} & {} \frac{M_1}{k_p+ \omega _ok_d}=\textrm{o}(1), \frac{M_2}{\omega _o+ k_d}=\textrm{o}(1), \nonumber \\{} & {} \frac{k_p}{k_d^2}=\textrm{o}(1), \frac{k_d}{\omega _o}\in \left( \frac{1}{15},1\right) , \end{aligned}$$
(D.1)

there is \(|L(jk_d)|>\frac{b}{{\hat{b}}}, |L\left( j\frac{bk_d}{{\hat{b}}}\right) |>\frac{{\hat{b}}}{b}.\) It implies that \(\omega _{c}> \min \left\{ k_d,\frac{bk_d}{{\hat{b}}}\right\} \). Therefore, \(\omega _{c}\) satisfies \({\tilde{f}}(\omega _{c})= 0\), where

$$\begin{aligned} {\tilde{f}}(\omega _{c})= & {} \omega _{c}^4- \left( \frac{b}{{\hat{b}}}\right) ^2(\omega _o+k_d)^2(1+2\textrm{o}(1))\omega _{c}^2\nonumber \\{} & {} \quad -\left( \frac{b}{{\hat{b}}}\right) ^2\omega _o^2k_d^2(1+4\textrm{o}(1)). \end{aligned}$$
(D.2)

Denote \(v_1=\left[ \frac{{\hat{b}}\omega _{c}}{b(\omega _o+k_d)}\right] ^2\), (D.2) can be rewritten as \({\tilde{f}}_1(v_1)=\frac{{\tilde{f}}(\omega _{c})}{(\frac{b}{{\hat{b}}})^2 (\omega _o+k_d)^4} = \left( \frac{b}{{\hat{b}}}\right) ^2v_1^2 -\left( \frac{b}{{\hat{b}}}\right) ^2(1+2\textrm{o}(1))v_1-\textrm{o}(1)=0\). It can be obtained that \(\omega _c=\frac{b}{{\hat{b}}}(\omega _o+k_d)(1+\textrm{o}(1))\).

Denote \(\gamma =\frac{\omega _c}{\omega _o}=\frac{b}{{\hat{b}}} (1+\frac{k_d}{\omega _o})(1+\textrm{o}(1))\), when parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\)) satisfy (D.1), the phase margin can be obtained \(\textrm{PM}=\frac{\pi }{2}+\arctan \frac{(k_p+\omega _ok_d)\omega _c}{\omega _ok_p- (\omega _o+k_d)\omega _c^2}+ \arctan \frac{-a_2\omega _c}{\omega _c^2+ a_1} =\frac{\pi }{2}-\arctan \frac{\frac{k_d}{\omega _o}(1+ \textrm{o}(1)\frac{k_d}{\omega _o})}{(1+\frac{k_d}{\omega _o}- \textrm{o}(1)\frac{ k_d^2}{\omega _o^2\gamma ^2})\gamma }-arctan\frac{\textrm{sign}(a_2)\sqrt{\frac{k_d}{\omega _o}\textrm{o}(1)}}{\gamma (1- \textrm{o}(1)\frac{k_d}{2\omega _o\gamma ^2})}\). Thus, \(\textrm{PM}=\frac{\pi }{2}-\frac{ {\hat{b}}}{b}\Big (\frac{\frac{k_d}{\omega _o}}{(1+\frac{k_d}{\omega _o})^2} +\frac{\textrm{sign}(a_2)\frac{1}{3}\sqrt{ \frac{k_d}{\omega _o}}}{1+\frac{k_d}{\omega _o}}+ \textrm{o}(1)\Big )\). \(\square \)

Proof of Corollary 1 The permitted time delay \(\tau = \frac{\textrm{PM}}{\omega _c}\). According to the analyses in Proof of Theorem 4, \(\tau (\omega _o,{\hat{b}})\approx \frac{\frac{\pi }{2}-\frac{\frac{k_d}{\omega _o}}{\frac{ b}{{\hat{b}}}(1+\frac{k_d}{\omega _o})^2}-\frac{\textrm{sign}(a_2)\frac{1}{3}\sqrt{ \frac{k_d}{\omega _o}}}{\frac{b}{{\hat{b}}}(1+\frac{k_d}{\omega _o})}}{\frac{b}{{\hat{b}}}(\omega _o+k_d)}\).

First, it can be concluded that \(\tau \) is a quadratic function of \({\hat{b}}\), denote \(\tau {=}\frac{{\bar{A}}{\hat{b}}^2{+}{\bar{B}}{\hat{b}}{+}{\bar{C}}}{{\bar{D}}},\) where \({\bar{A}}{=}{-}\frac{\frac{k_d}{\omega _o}+\textrm{sign}(a_2)\frac{1}{3}(1+\frac{k_d}{\omega _o}) \sqrt{ \frac{k_d}{\omega _o}}}{b(1+\frac{k_d}{\omega _o})^2}\), \({\bar{B}}=\frac{\pi }{2}\), \({\bar{C}}=0\), \({\bar{D}}=b(\omega _o+k_d)\). The sign of \({\bar{A}}\) is determined as follows: (1) If \(\textrm{sign}(a_2)>0\), \({\bar{A}}<0\); (2) If \(\textrm{sign}(a_2)<0\) and \(\frac{k_d}{\omega _o}\in (0, \frac{7-\sqrt{45}}{2}(\approx 0.146))\), \({\bar{A}}>0\); (3) If \(\textrm{sign}(a_2)<0\) and \(\frac{k_d}{\omega _o}\in (\frac{7-\sqrt{45}}{2}(\approx 0.146), 1)\), \({\bar{A}}<0\).

To sum up, when \(\frac{k_d}{\omega _o}\in (\frac{1}{6}, 1)\), for any \(|a_2|<M_2\), there is \({\bar{A}}<0\).

When \({\bar{A}}>0\), \(\tau \) increases with increase of \({\hat{b}}\). When \({\bar{A}}<0\), the quadratic function is a parabola going downwards with two roots, one of which is 0 and another root is positive. The axis of symmetry is \(E(b)\triangleq -\frac{B}{2A}=\frac{\frac{\pi }{4}b(1+\frac{k_d}{\omega _o})^2}{\frac{k_d}{\omega _o}+\textrm{sign}(a_2)\frac{1}{3}(1+\frac{k_d}{\omega _o}) \sqrt{\frac{k_d}{\omega _o}}}\), thus, when \({\hat{b}} \in (\frac{\underline{b}}{2}, E(\underline{b}))\), \(\tau \) increases with increase of \({\hat{b}}\). When \({\hat{b}}> E(\overline{b})\) and \(\omega _o<6k_d\), \(\tau \) decreases with increase of \({\hat{b}}\). Furthermore, \(E(b)\ge \frac{\frac{\pi }{4}\underline{b}(1+\frac{k_d}{\omega _o})^2}{\frac{k_d}{\omega _o}+\frac{1}{3}(1+\frac{k_d}{\omega _o}) \sqrt{ \frac{k_d}{\omega _o}}}\ge \underline{b}\). It can be obtained that when \({\hat{b}}<\underline{b}\), the permitted time delay \(\tau \) decreases with decrease of \({\hat{b}}\).

On the other hand, the permitted time delay \(\tau \) can be rewritten as follows:

$$\begin{aligned} \tau (\varpi ){\approx }\frac{\frac{\pi }{2}\frac{b}{{\hat{b}}}\varpi (1{+}\varpi )^2 {-}\textrm{sign}(a_2)\frac{1}{3}\varpi ^{\frac{3}{2}}(1{+}\varpi ){-}\varpi ^2 }{(\frac{b}{{\hat{b}}})^2k_d(1{+}\varpi )^3}, \end{aligned}$$

where \(\varpi =\frac{k_d}{\omega _o}\), \(\varpi \in (0,1)\). Since the derivative of \(\tau \) can be written as follows: \(\frac{\partial \tau }{\partial \varpi }=\frac{\chi (\varpi )}{(\frac{b}{{\hat{b}}})^2k_d(1+\varpi )^4}\), \(\chi (\varpi )=\textrm{sign}(a_2)\frac{1}{6}\varpi ^{\frac{1}{2}}(\varpi -3)(\varpi +1) +\frac{\pi }{2}\frac{b}{{\hat{b}}}(1+\varpi )^2 +\varpi ^2- 2\varpi \).

If \(\textrm{sign}(a_2)<0\), it can be obtained that \(\chi (\varpi )\ge -\frac{1}{6}\varpi ^{\frac{1}{2}}(\varpi -3)(\varpi +1) +\frac{\pi }{6}(1+\varpi )^2 +\varpi ^2- 2\varpi >0, \varpi \in (0,1)\). Thus, \(\frac{\partial \tau }{\partial \varpi }>0\) for all \(b\in [\underline{b},\overline{b}]\).

If \(\textrm{sign}(a_2)>0\), when \(\varpi \in (0,\frac{1}{4})\cup (\frac{4}{5},1)\) and \(\frac{b}{{\hat{b}}}\ge \frac{1}{3}\), it can be obtained that \(\chi (\varpi )\ge \frac{1}{6}\varpi ^{\frac{1}{2}}(\varpi -3)(\varpi +1) +\frac{\pi }{6}(1+\varpi )^2 +\varpi ^2- 2\varpi >0\). Therefore, \(\frac{\partial \tau }{\partial \varpi }>0\) for all \(b\in [\underline{b},\overline{b}]\), \(\varpi =\frac{k_d}{\omega _o}\in (0,\frac{1}{4})\cup (\frac{4}{5},1)\) and \(\frac{b}{{\hat{b}}}\ge \frac{1}{3}\).

In conclusion, when \(\omega _o> 4k_d\) and \({\hat{b}}\le 3\underline{b}\), the permitted time delay \(\tau \) decreases with increase of \(\omega _o\). \(\square \)

Proof of Theorem 5 When parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\), \({\hat{b}}\)) satisfy (C.1), there is \(G_d(s)\thickapprox \) \(\frac{{\hat{b}}s}{\frac{{\hat{b}}}{b}s^3+ (\omega _o+ k_d)s^2+ (\omega _ok_d+ k_p)s +\omega _ok_p}.\)

Replacing s with \(j\omega \), it can be obtained that \(G_d(j\omega )\approx \)\(\frac{{\hat{b}}j\omega }{\omega _ok_p- (\omega _o+ k_d)\omega ^2+ j\omega (\omega _ok_d+ k_p- \frac{{\hat{b}}}{b}\omega ^2)},\) thus, \(|G_d(j\omega )|^2\approx \)\(\frac{{\hat{b}}^2}{f_1(\omega )+ f_2(\omega )},\) where \(f_1(\omega )=\frac{\omega _o^2k_p^2}{\omega ^2}- 2\omega _ok_p(\omega _o+ k_d) + (\omega _o+ k_d)^2\omega ^2\), \(f_2(\omega )=(\omega _ok_d+ k_p)^2- 2(\omega _ok_d+ k_p)\frac{{\hat{b}}}{b}\omega ^2+ (\frac{{\hat{b}}}{b})^2\omega ^4.\)

From the properties of inequality of arithmetic and geometric means and quadratic functions, it can be obtained that \(f_1(\omega )=f_2(\omega )\) and \(\frac{df_1(\omega )}{d\omega }*\frac{df_2(\omega )}{d\omega }<0,\) there is a unique solution to the above equation, which is denoted as \({\hat{\omega }}(b,{\hat{b}})\). Hence, \(f_1(\omega )+ f_2(\omega )\ge f_1({\hat{\omega }})= \frac{\omega _o^2k_p^2}{{\hat{\omega }}^2}- 2\omega _ok_p(\omega _o+ k_d) + (\omega _o+ k_d)^2{\hat{\omega }}^2.\)

When parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\)) satisfy conditions (3)–(4) in Theorem 4 and \(\frac{\underline{b}}{{\hat{b}}}\ge \frac{1}{3}\), it can be obtained that \({\hat{\omega }}^2(b,{\hat{b}})\in \left\{ \frac{\omega _ok_p}{\omega _o+k_d}, \frac{b}{{\hat{b}}}(\omega _ok_d+k_p)\right\} \).

Furthermore,

\(f_1\left( \sqrt{\frac{(\alpha +1)\omega _ok_p}{\omega _o{+}k_d}}\right) {=} \frac{\alpha ^2\omega _ok_p(\omega _o{+}k_d)}{\alpha {+}1}{\le }\) \( f_2\left( \sqrt{\frac{(\alpha {+}1)\omega _ok_p}{\omega _o{+}k_d}}\right) ,\)

where \(\alpha {=} \left\{ \begin{aligned}&[\frac{\omega _o}{k_d}],{} & {} \omega _o\in (k_d,4k_d),\\&4,{} & {} \omega _o\in [4k_d,6k_d),\\&5,{} & {} \omega _o\in [6k_d,9k_d),\\&6,{} & {} \omega _o\in [9k_d,13k_d),\\&7,{} & {} \omega _o\in [13k_d,15k_d)\!. \end{aligned} \right. \)

Therefore, \({\hat{\omega }}^2(b,{\hat{b}})\in \left\{ \frac{(\alpha +1)\omega _ok_p}{\omega _o+k_d}, \frac{b}{{\hat{b}}}(\omega _ok_d+k_p)\right\} .\) Hence, \(f_1({\hat{\omega }})\ge f_1\left( \sqrt{\frac{(\alpha +1)\omega _ok_p}{\omega _o+k_d}}\right) = \frac{\alpha ^2\omega _ok_p(\omega _o+k_d)}{\alpha +1}.\)

Define \(A_4(\omega _o,{\hat{b}})=\sqrt{\frac{(\alpha +1){\hat{b}}^2}{\alpha ^2\omega _ok_p(\omega _o+k_d)}},\) thus, when parameters in ADRC \(k_p\), \(k_d\), \(\omega _o\) and \({\hat{b}}\) satisfy conditions in Theorem 6, \(|G_d(j\omega )|\le A_4(\omega _o,{\hat{b}})<1\) for any \(\omega >0\). In particular, \(\lim \nolimits _{\omega \rightarrow 0}|G_d(j\omega )|=0, \lim \nolimits _{\omega \rightarrow \infty }|G_d(j\omega )|=0.\)

Moreover, when parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\), \({\hat{b}}\)) satisfy (C.1), there is \(G_{du}(s){\thickapprox }{-}\frac{(\omega _o{+}k_d)s^2{+}(k_p{+}\omega _ok_d)s{+}\omega _ok_p}{\frac{{\hat{b}}}{b}s^3{+} (\omega _o+ k_d)s^2{+} (\omega _ok_d{+} k_p)s {+}\omega _ok_p},\) i.e. \(G_{du}(j\omega ){\approx }{-}\frac{\omega _ok_p{-} (\omega _o{+} k_d)\omega ^2{+} j\omega (\omega _ok_d{+} k_p)}{\omega _ok_p{-} (\omega _o{+} k_d)\omega ^2{+} j\omega (\omega _ok_d{+} k_p{-} \frac{{\hat{b}}}{b}\omega ^2)},\) thus, \(|G_{du}(j\omega )|^2\approx \frac{g_1^2+ g_2^2}{g_1^2+ g_3^2},\) where \(g_1(\omega )=\omega _ok_p- (\omega _o+ k_d)\omega ^2\), \(g_2(\omega )=(\omega _ok_d+ k_p)\omega \), \(g_3(\omega )=[(\omega _ok_d+ k_p)-\frac{{\hat{b}}}{b}\omega ^2]\omega .\) Hence, \(|G_{du}(j\omega )|^2\approx 1+\frac{g_4}{g_5},\) where \(g_4(\omega )=-(\frac{{\hat{b}}}{b})^2\omega ^6+2\frac{{\hat{b}}}{b}(\omega _ok_d+k_p)\omega ^4,\) \(g_5(\omega )=(\frac{{\hat{b}}}{b})^2\omega ^6+[(\omega _o+k_d)^2- 2\frac{{\hat{b}}}{b}(\omega _ok_d+k_p)]\omega ^4 +[(\omega _ok_d+k_p)^2- 2\omega _ok_p(\omega _o+k_d)]\omega ^2+ \omega _o^2k_p^2.\)

Set \(\varOmega _1=\{\omega >0\mid g_6(\omega )=0\}\), where \(g_6(\omega )=11(\frac{{\hat{b}}}{b})^2\omega ^6 +[(\omega _o+k_d)^2 -22\frac{{\hat{b}}}{b}(\omega _ok_d+k_p)]\omega ^4+ [(\omega _ok_d+k_p)^2- 2\omega _ok_p(\omega _o+k_d)]\omega ^2+ \omega _o^2k_p^2\). Define

$$\begin{aligned} \begin{aligned}&\omega _{du1}(\omega _o, b,{\hat{b}})= \left\{ \begin{aligned}&\sqrt{2\frac{b}{{\hat{b}}}(\omega _ok_d+k_p)},{} & {} \varOmega _1=\emptyset ,\\&\min _{\omega \in \varOmega _1}\omega ,{} & {} \varOmega _1\ne \emptyset , \end{aligned} \right. \\&\omega _{du}(\omega _o,{\hat{b}})=\min _{b\in [\underline{b},\overline{b}]} \omega _{du1}(\omega _o,b,{\hat{b}})\le \sqrt{2\frac{\underline{b}}{{\hat{b}}}(\omega _ok_d+k_p)}. \end{aligned} \end{aligned}$$

there is \(|G_{du}(j\omega )|=1+\textrm{o}(1), \forall \omega <\omega _{du}(\omega _o,{\hat{b}}).\) In particular, \(\lim \nolimits _{\omega \rightarrow 0}G_{du}(j\omega )=-1, \lim \nolimits _{\omega \rightarrow \infty }|G_{du}(j\omega )|=0.\) \(\square \)

Proof of Theorem 6 The noise suppression performance of the closed-loop systems (1), (5) and (6) with (10) is considered below.

When parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\), \({\hat{b}}\)) satisfy (C.1), there is \(G_{n1}(s)\thickapprox -\frac{k_p(s+\omega _o)}{\frac{{\hat{b}}}{b}s^3+ (\omega _o+ k_d)s^2+ (\omega _ok_d+ k_p)s +\omega _ok_p},\) \(G_{n2}(s)\thickapprox -\frac{(\omega _o+k_d)s+ \omega _ok_d}{\frac{{\hat{b}}}{b}s^3+ (\omega _o+ k_d)s^2+ (\omega _ok_d+ k_p)s +\omega _ok_p}.\) Replacing s with \(j\omega \), it can be obtained that \(|G_{n1}(j\omega )|^2\approx \frac{k_p^2(\omega ^2+\omega _o^2)}{(f_1(\omega )+ f_2(\omega ))\omega ^2},\) \(|G_{n2}(j\omega )|^2\approx \frac{(\omega _o+k_d)^2\omega ^2+ \omega _o^2k_d^2}{(f_1(\omega )+ f_2(\omega ))\omega ^2},\) where \(f_1(\omega )=\frac{\omega _o^2k_p^2}{\omega ^2}- 2\omega _ok_p(\omega _o+ k_d) + (\omega _o+ k_d)^2\omega ^2\), \(f_2(\omega )=(\omega _ok_d+ k_p)^2- 2(\omega _ok_d+ k_p)\frac{{\hat{b}}}{b}\omega ^2+ (\frac{{\hat{b}}}{b})^2\omega ^4.\)

Denote \({\tilde{A}}=(\frac{{\hat{b}}}{b})^2\), \({\tilde{B}}=(\omega _o+ k_d)^2 -2\frac{{\hat{b}}}{b}(\omega _ok_d+ k_p)\), \({\tilde{C}}=\omega _o^2k_d^2- 2\omega _o^2k_p\). Set \(\varOmega _2=\{\omega \in R\mid f_3(\omega )=0\}\), where \(f_3(\omega )=(\frac{{\hat{b}}}{b})^2\omega ^6 +[(\omega _o+k_d)^2 -2\frac{{\hat{b}}}{b}(\omega _ok_d+k_p)]\omega ^4+ [(\omega _ok_d+k_p)^2- (\omega _o+k_d)^2- 2\omega _ok_p(\omega _o+k_d)]\omega ^2+ \omega _o^2k_p^2-\omega _o^2k_d^2\).

Define

\(A_5(\omega _o,{\hat{b}}){=}\sqrt{\max _{b\in [\underline{b},\overline{b}]}\{A_{51}(\omega _o,b,{\hat{b}}), A_{52}(\omega _o,b,{\hat{b}})\}}\), where

$$\begin{aligned} \begin{aligned}&A_{51}(\omega _o,b,{\hat{b}}){=} \left\{ \begin{aligned}&0,{} & {} {\tilde{B}}^2{-} 4{\tilde{A}}{\tilde{C}}<0,\\&\frac{{-}{\tilde{B}} {+}({\tilde{B}}^2{-} 4{\tilde{A}}{\tilde{C}})^{\frac{1}{2}}}{2{\tilde{A}}},{} & {} {\tilde{B}}^2{-} 4{\tilde{A}}{\tilde{C}}{\ge }0. \end{aligned} \right. \\&A_{52}(\omega _o,b,{\hat{b}}){=} \left\{ \begin{aligned}&0,{} & {} \varOmega _2{=}\emptyset \text { or } \max _{\omega \in \varOmega _{2}}\omega \le 0,\\&\omega ^2,{} & {} \max _{\omega \in \varOmega _{2}}\omega {>}0. \end{aligned} \right. \end{aligned} \end{aligned}$$

From the properties of quadratic and cubic functions, there is \(\forall \omega > A_{5}(\omega _o,{\hat{b}})\), \(|G_{n1}(j\omega )|<1\) and \(|G_{n2}(j\omega )|<1\). Particularly, \(\lim \nolimits _{\omega \rightarrow \infty }|G_{n1}(j\omega )|=0, \lim \nolimits _{\omega \rightarrow \infty }|G_{n2}(j\omega )|=0.\)

Moreover, when parameters in ADRC (\(k_p\), \(k_d\), \(\omega _o\), \({\hat{b}}\)) satisfy (C.1), there is \(G_{n1u}(s)\thickapprox \) \({-}\frac{k_ps^3{+}k_p\omega _os^2{-}k_p(a_1{+}\omega _oa_2)s-a_1k_p\omega _o}{{\hat{b}}s^3{+} b(\omega _o{+} k_d)s^2{+} b(\omega _ok_d{+} k_p)s {+}b\omega _ok_p},\)\(G_{n2u}(s){\thickapprox }{-}\) \(\frac{{\bar{\xi }}(s)}{{\hat{b}}s^3{+} b(\omega _o{+} k_d)s^2{+} b(\omega _ok_d{+} k_p)s {+}b\omega _ok_p},\) where \({\bar{\xi }}(s){=}(\omega _o{+}k_d)s^3\) \({+}[\omega _ok_d-a_2(\omega _o+k_d)]s^2 -[a_1(\omega _o+k_d){+}a_2\omega _ok_d]s-a_1\omega _ok_d.\) Replacing s with \(j\omega \), it can be obtained that \(\lim \nolimits _{\omega \rightarrow 0}|G_{n1u}(j\omega )|=|\frac{a_1}{b}|\), \(\lim \nolimits _{\omega \rightarrow \infty }|G_{n1u}(j\omega )|=\frac{k_p}{{\hat{b}}}\), \(\lim \nolimits _{\omega \rightarrow 0}|G_{n2u}(j\omega )|=|\frac{a_1k_d}{bk_p}|\), \(\lim \nolimits _{\omega \rightarrow \infty }|G_{n2u}(j\omega )|=\frac{\omega _o+k_d}{{\hat{b}}}.\) \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Huang, Y. & Gao, Z. On tuning of ADRC with competing design indices: a quantitative study. Control Theory Technol. 21, 16–33 (2023). https://doi.org/10.1007/s11768-023-00136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-023-00136-z

Keywords

Navigation