<table>
<thead>
<tr>
<th>Fulltext Link</th>
<th>Title</th>
<th>Author(s)</th>
<th>Volume</th>
<th>Issue</th>
<th>Pub_Year</th>
<th>Downloads</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://doi.org/10.1007/S11768-019-8148-Z</td>
<td>Precedence-constrained path planning of messenger UAV for air-ground coordination</td>
<td>Yulong Ding, Bin Xin & Jie Chen</td>
<td>17</td>
<td>1</td>
<td>2019</td>
<td>42</td>
<td>5</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8179-5</td>
<td>Distributed optimal consensus of multiple double integrators under bounded velocity and acceleration</td>
<td>Zhirong Qiu, Lihua Xie & Yiguang Hong</td>
<td>17</td>
<td>1</td>
<td>2019</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9084-Y</td>
<td>Adaptive nonsingular fast terminal sliding mode control for underwater manipulator robotics with asymmetric saturation actuators</td>
<td>Zengcheng Zhou, Guoyuan Tang, Hui Huang, Lijun Han & Ruikun Xu</td>
<td>18</td>
<td>1</td>
<td>2020</td>
<td>189</td>
<td>3</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8084-Y</td>
<td>Robust current and speed control of a permanent magnet synchronous motor using SMC and ADRC</td>
<td>Yang Zhao, Lili Dong</td>
<td>17</td>
<td>2</td>
<td>2019</td>
<td>66</td>
<td>3</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8196-4</td>
<td>Stabilization of discrete-time linear systems by delay independent truncated predictor feedback</td>
<td>Yusheng Wei & Zongli Lin</td>
<td>17</td>
<td>1</td>
<td>2019</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-0048-8</td>
<td>A review on charging behavior of electric vehicles: data, model, and control</td>
<td>Qing-Shan Jia & Teng Long</td>
<td>18</td>
<td>3</td>
<td>2020</td>
<td>247</td>
<td>2</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9129-Y</td>
<td>Two-stage on-board optimization of merging velocity planning with energy management for HEVs</td>
<td>Bo Zhang, Wenjing Cao & Tielong Shen</td>
<td>17</td>
<td>4</td>
<td>2019</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8172-Z</td>
<td>An output-based distributed observer and its application to the cooperative linear output regulation problem</td>
<td>Tao Liu, Jie Huang</td>
<td>17</td>
<td>1</td>
<td>2019</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>DOI</td>
<td>Title</td>
<td>Authors</td>
<td>Volume</td>
<td>Year</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8183-9</td>
<td>Distributed adaptive Kalman filter based on variational Bayesian technique</td>
<td>Chen Hu, Xiaoming Hu & Yiguang Hong</td>
<td>17</td>
<td>2019</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8243-1</td>
<td>Rail pressure controller design of GDI basing on predictive functional control</td>
<td>Zhiming Zhang, Lei Xie & Hongye Su</td>
<td>17</td>
<td>2019</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8127-4</td>
<td>Routh table test for stability of commensurate fractional degree polynomials and their commensurate fractional order systems</td>
<td>Sheng-Guo Wang, Shu Liang, Liang Ma & Kaixiang Peng</td>
<td>17</td>
<td>2019</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9121-6</td>
<td>A unified optimal planner for autonomous parking vehicle</td>
<td>Dequan Zeng, Zhuoping Yu, Lu Xiong, Peizhi Zhang & Zhiqiang Fu</td>
<td>17</td>
<td>2019</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9126-1</td>
<td>Class conditional distribution alignment for domain adaptation</td>
<td>Kai Cao, Zhipeng Tu & Yang Ming</td>
<td>18</td>
<td>2020</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8279-2</td>
<td>Robust control for electric vehicle powertrains</td>
<td>Johannes Buerger & James Anderson</td>
<td>17</td>
<td>2019</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9118-1</td>
<td>Optimization management of hybrid energy source of fuel cell truck based on model predictive control using traffic light information</td>
<td>Qiu Yi Guo, Zhi Guo Zhao, Pei Hong Shen & Peidong Zhou</td>
<td>17</td>
<td>2019</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0001-X</td>
<td>Energy-efficient receding horizon trajectory planning of high-speed trains using real-time traffic information</td>
<td>Defeng He et al.</td>
<td>18</td>
<td>2020</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9136-Z</td>
<td>Stability and weighted sensitivity analysis of robust controller for heat exchanger</td>
<td>Sapna Gupta et al.</td>
<td>18</td>
<td>2020</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9076-7</td>
<td>Distributed active fault tolerant control design against actuator faults for multiple mobile robots</td>
<td>Mahmoud Hussein et al.</td>
<td>17</td>
<td>2019</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9144-Z</td>
<td>Predictive car-following scheme for improving traffic flows on urban road networks</td>
<td>A. S. M. Bakibillah et al.</td>
<td>17</td>
<td>2019</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Volume</td>
<td>Pages</td>
<td>Formats</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------------------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-9119-0</td>
<td>An MPC-based manoeuvre stability controller for full drive-by-wire vehicles</td>
<td>Ping Wang et al.</td>
<td>2019</td>
<td>60</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9047-Z</td>
<td>Mutual information of cylinder pressure and combustion phase estimation in spark ignition engines</td>
<td>Huanyu Di & Tielong Shen</td>
<td>2020</td>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8189-3</td>
<td>Event-triggered state estimation for T-S fuzzy affine systems based on piecewise Lyapunov-Krasovskii functionals</td>
<td>Meng Wang, Jianbin Qiu & Gang Feng</td>
<td>2019</td>
<td>29</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8212-8</td>
<td>Nonlinear observer-based control design and experimental validation for gasoline engines with EGR</td>
<td>Weihai Jiang & Tielong Shen</td>
<td>2019</td>
<td>29</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8266-7</td>
<td>On the mechanism and control for the ultra-low frequency oscillation in NY Power Grid with large-scale hydropower</td>
<td>Ancheng Xue, Jiawei Wang, Chao Zheng, Joe H. Chow & Tianshu Bi</td>
<td>2019</td>
<td>24</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8021-0</td>
<td>Optimal finite-dimensional spectral densities for the identification of continuous-time MIMO systems</td>
<td>I. M. Mithun, Shrvan Mohan & Bharath Bhikkaji</td>
<td>2019</td>
<td>16</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8246-Y</td>
<td>JSAC-SICE benchmark problem for vehicle dynamics control</td>
<td>Yutaka Hirano</td>
<td>2019</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-7298-3</td>
<td>Diagnosability of a class of discrete event systems based on observations</td>
<td>S. Reshmila & Devanathan Rajagopalan</td>
<td>2019</td>
<td>14</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8258-7</td>
<td>Introduction to the benchmark challenge on common rail pressure control of gasoline direct injection engines</td>
<td>Qifang Liu et al.</td>
<td>2019</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00015-X</td>
<td>Minimum energy optimal external torque control of human binocular vision</td>
<td>Bijoy K. Ghosh & Bhagya Athukorallage</td>
<td>2020</td>
<td>269</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9195-1</td>
<td>Cooperative control and communication of intelligent swarms: a survey</td>
<td>Kun Hou, Yajun Yang, Xuerong Yang, Jiazhe Lai</td>
<td>2020</td>
<td>210</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0008-W</td>
<td>Recent advances on formal methods for safety and security of cyber-physical systems</td>
<td>Xiang Yin et al.</td>
<td>2020</td>
<td>143</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0110-6</td>
<td>Multi-agent system motion planning under temporal logic specifications and control barrier function</td>
<td>Xinyuan Huang et al.</td>
<td>2020</td>
<td>130</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9145-Y</td>
<td>Backstepping approach for design of PID controller with guaranteed performance for micro-air UAV</td>
<td>Yusuf Kartal et al.</td>
<td>2020</td>
<td>129</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOI</td>
<td>Title and Authors</td>
<td>Pages</td>
<td>Year</td>
<td>Volume</td>
<td>Pages</td>
<td>Score</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9061-1</td>
<td>Adaptive high-order sliding mode control based on quasi-time delay estimation for uncertain robot manipulator</td>
<td>18</td>
<td>2020</td>
<td>115</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00007-X</td>
<td>Distributed policy evaluation via inexact ADMM in multi-agent reinforcement learning</td>
<td>18</td>
<td>2020</td>
<td>100</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9292-1</td>
<td>Recent advances on dynamic learning from adaptive NN control</td>
<td>18</td>
<td>2020</td>
<td>99</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9125-2</td>
<td>Stability analysis for time delay control of nonlinear systems in discrete-time domain with a standard discretisation method</td>
<td>18</td>
<td>2020</td>
<td>94</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9204-4</td>
<td>Distributed best response dynamics for Nash equilibrium seeking in potential games</td>
<td>18</td>
<td>2020</td>
<td>82</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-8289-0</td>
<td>New directions in quantum neural networks research</td>
<td>17</td>
<td>2019</td>
<td>82</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-8151-4</td>
<td>Mathematical model derivation of an unmanned circulation control aerial vehicle UC2AV</td>
<td>18</td>
<td>2020</td>
<td>77</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-8280-9</td>
<td>H_{∞} position transfer and regulation for floating offshore wind turbines</td>
<td>18</td>
<td>2020</td>
<td>76</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0020-7</td>
<td>Real-time optimization of energy consumption under adaptive cruise control for connected HEVs</td>
<td>18</td>
<td>2020</td>
<td>75</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0017-2</td>
<td>Analysis of finite-time regulation property of biomolecular PI controller</td>
<td>18</td>
<td>2020</td>
<td>73</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0109-2</td>
<td>New directions in distributed Nash equilibrium seeking based on monotone operator theory</td>
<td>18</td>
<td>2020</td>
<td>72</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0021-6</td>
<td>Distributed optimal energy consumption control of HEVs under MFG-based speed consensus</td>
<td>18</td>
<td>2020</td>
<td>72</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0011-8</td>
<td>Finite-time non-fragile filtering for nonlinear networked control systems via a mixed time/event-triggered transmission mechanism</td>
<td>18</td>
<td>2020</td>
<td>71</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9202-6</td>
<td>Robust network structures for conserving total activity in Boolean networks</td>
<td>18</td>
<td>2020</td>
<td>69</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0086-2</td>
<td>Learning implicit information in Bayesian games with knowledge transfer</td>
<td>18</td>
<td>2020</td>
<td>69</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0013-6</td>
<td>Multi-agent graphical games with input constraints: an online learning solution</td>
<td>18</td>
<td>2020</td>
<td>69</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00019-7</td>
<td>Design of tracking observers for locally jointly observable systems</td>
<td>18</td>
<td>2020</td>
<td>67</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOI Link</td>
<td>Title</td>
<td>Authors</td>
<td>Year</td>
<td>Volume</td>
<td>Page</td>
<td>Year of Publication</td>
<td>Page of Publication</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9109-2</td>
<td>Robustness analysis and distributed control of a networked system with time-varying delays</td>
<td>Zhike Wang et al.</td>
<td>2020</td>
<td>18</td>
<td>3</td>
<td>2020</td>
<td>66</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00012-0</td>
<td>Consistent Kalman filters for nonlinear uncertain systems over sensor networks</td>
<td>Xingkang He et al.</td>
<td>2020</td>
<td>18</td>
<td>4</td>
<td>2020</td>
<td>63</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00023-X</td>
<td>Consensus with preserved privacy against neighbor collusion</td>
<td>Silun Zhang et al.</td>
<td>2020</td>
<td>18</td>
<td>4</td>
<td>2020</td>
<td>59</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00002-2</td>
<td>Application of networked discrete event system theory on intelligent transportation systems</td>
<td>Jiayuan Liang et al.</td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00014-Y</td>
<td>Robust statistical approach to stereo disparity maps denoising and refinement</td>
<td>James Okae et al.</td>
<td>2020</td>
<td>18</td>
<td>4</td>
<td>2020</td>
<td>57</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8028-6</td>
<td>Invariant observer design of attitude and heading reference system</td>
<td>Martin Barczyk</td>
<td>2019</td>
<td>17</td>
<td>3</td>
<td>2019</td>
<td>56</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00018-8</td>
<td>Distributed stochastic mirror descent algorithm for resource allocation problem</td>
<td>Yinghui Wang et al.</td>
<td>2020</td>
<td>18</td>
<td>4</td>
<td>2020</td>
<td>55</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-9190-6</td>
<td>Application of dynamic sensor activation on operating automated headlights</td>
<td>Han Ding et al.</td>
<td>2020</td>
<td>18</td>
<td>3</td>
<td>2020</td>
<td>47</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0009-2</td>
<td>Diffusion logistic regression algorithms over multiagent networks</td>
<td>Yan Du et al.</td>
<td>2020</td>
<td>18</td>
<td>2</td>
<td>2020</td>
<td>46</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00005-Z</td>
<td>Model variables identification of a gas turbine using a subspace approach based on input/output data measurements</td>
<td>Hakim Bagua et al.</td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0006-5</td>
<td>Regional averaged controllability for hyperbolic parameter dependent systems</td>
<td>Mouna Abdelli et al.</td>
<td>2020</td>
<td>18</td>
<td>3</td>
<td>2020</td>
<td>38</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-8038-4</td>
<td>A novel control solution for improved trajectory tracking and LVRT performance in DFIG-based wind turbines</td>
<td>Ahmad Hashemi et al.</td>
<td>2020</td>
<td>18</td>
<td>1</td>
<td>2020</td>
<td>37</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8268-5</td>
<td>An overview of various control benchmarks with a focus on automotive control</td>
<td>Eriksson Lars</td>
<td>2019</td>
<td>17</td>
<td>2</td>
<td>2019</td>
<td>36</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-0091-5</td>
<td>Air quality short-term control in an industrial region under adverse weather conditions</td>
<td>Yuri Skiba et al.</td>
<td>2020</td>
<td>18</td>
<td>3</td>
<td>2020</td>
<td>33</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8260-0</td>
<td>Control of the common rail pressure in gasoline engines through an extended state observer based MPC</td>
<td>Chao Wu, Kang Song & Hui Xie</td>
<td>2019</td>
<td>17</td>
<td>2</td>
<td>2019</td>
<td>28</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-020-00003-1</td>
<td>Simplification of Shapley value for cooperative games via minimum carrier</td>
<td>Haitao Li, Shuling Wang, Aixin Liu & Meixia Xia</td>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>DOI</td>
<td>Title</td>
<td>Authors</td>
<td>Volume</td>
<td>Issue</td>
<td>Year</td>
<td>Page</td>
<td>Altmetric</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8191-9</td>
<td>Prediction method for energy consumption per ton of fused magnesium furnaces using data driven and mechanism model</td>
<td>Dan Guo, Zhiwei Wu, Tianyou Chai, Jie Yang & Jinliang Ding</td>
<td>17</td>
<td>1</td>
<td>2019</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8259-6</td>
<td>Terminal sliding mode control of rail pressure for gasoline direct injection engines</td>
<td>Chen Zhang, Ying Zhang, Cong Chai & Miaolei Zhou</td>
<td>17</td>
<td>2</td>
<td>2019</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8201-Y</td>
<td>Axis-coupled trajectory generation for chains of integrators through smoothing splines</td>
<td>Shupeng Lai, Menglu Lan, Kehong Gong & Ben M. Chen</td>
<td>17</td>
<td>1</td>
<td>2019</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8277-4</td>
<td>Revisiting the benchmark problem of starting control of combustion engines</td>
<td>Jiangyan Zhang, Zhenhui Xu & Jinwu Gao</td>
<td>17</td>
<td>2</td>
<td>2019</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>https://doi.org/10.1007/S11768-019-8276-5</td>
<td>SICE benchmark problem: starting speed control of SI engines</td>
<td>Junichi Kako</td>
<td>17</td>
<td>2</td>
<td>2019</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>