引用本文:张良印,陈霞,郝飞.重置事件触发机制下多智能体系统二分一致性[J].控制理论与应用,2026,43(1):176~182.[点击复制]
ZHANG Liang-yin,CHEN Xia,HAO Fei.Bipartite consensus for multi-agent systems based on reset event-triggered mechanism[J].Control Theory & Applications,2026,43(1):176~182.[点击复制]
重置事件触发机制下多智能体系统二分一致性
Bipartite consensus for multi-agent systems based on reset event-triggered mechanism
摘要点击 204  全文点击 33  投稿时间:2023-12-14  修订日期:2025-08-15
查看全文  查看/发表评论  下载PDF阅读器   HTML
DOI编号  10.7641/CTA.2024.30805
  2026,43(1):176-182
中文关键词  多智能体系统  重置事件触发控制  二分一致性  细节平衡图  李雅普诺夫方法
英文关键词  multi-agent systems  reset event-triggered control  bipartite consensus  detail-balanced graph  Lyapunov methods
基金项目  国家自然科学基金项目(61703225,62473019,62203248), 山东省自然科学基金项目(ZR2022MF297,ZR2021MF087)资助.
作者单位E-mail
张良印 青岛理工大学信息与控制工程学院 1279114320@qq.com 
陈霞* 青岛理工大学信息与控制工程学院 xchen@qut.edu.cn 
郝飞 北京航空航天大学自动化科学与电气工程学院  
中文摘要
      本文研究了细节平衡通信拓扑图下的一阶多智能体系统的二分一致性问题.不同于文献中常见的动态事 件触发方法,提出一种与重置机制相结合的新型动态事件触发控制策略,触发条件阈值中的外部动态变量可以根据 预设的重置条件进行调节,当局部不一致状态偏差达到预设重置条件时,动态变量将被重置为其初始值,由此避免 系统临近一致点时的频繁触发现象,在保证期望控制性能的同时,进一步降低系统的通信负担.文章提出的重置事 件触发条件仅依赖智能体的局部状态构成,无需全局信息.随后,本文应用代数图论和李雅普诺夫稳定性理论,证明 了系统的实用二分一致性.此外,给出了无芝诺行为的理论分析.最后,通过仿真验证了提出方法的有效性.
英文摘要
      This paper investigates the bipartite consensus problem for first-order multi-agent systems with the detail balanced communication topology. Different from the common dynamic event-triggered control methods in the literature, a new dynamic event-triggered control strategy combined with the reset mechanism is proposed, in which the external dynamic variable in the trigger condition threshold can be adjusted according to the preset reset condition. If the local disagreement state error reaches the preset reset condition, the external dynamic variable will be reset to its initial value, to avoid the frequent triggering phenomena when the system is close to the consensus point, and further reduce the communi cation burden of the system while ensuring the desired control performance. The proposed reset event-triggering condition in this paper only depends on the local states of the agents and does not require any global information. Moreover, the al gebraic graph theory and the Lyapunov stability theory are applied to prove the practical bipartite consensus of the system. In addition, a theoretical analysis of Zeno-free is given. Finally, the simulation verifies the effectiveness of the proposed method.