| 引用本文: | 方 勇,王 泉,杜军朝,闫昱晓,袁志毅.复印机碳粉供应系统鲁棒模型预测控制[J].控制理论与应用,2026,43(2):436~442.[点击复制] |
| FANG Yong,WANG Quan,DU Jun-zhao,YAN Yu-xiao,YUAN Zhi-yi.Robust model predictive control of copier toner supply system[J].Control Theory & Applications,2026,43(2):436~442.[点击复制] |
|
| 复印机碳粉供应系统鲁棒模型预测控制 |
| Robust model predictive control of copier toner supply system |
| 摘要点击 133 全文点击 19 投稿时间:2023-12-28 修订日期:2025-05-22 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2024.30832 |
| 2026,43(2):436-442 |
| 中文关键词 模型预测控制 复印机 系统辨识 碳粉供应 鲸鱼优化算法 |
| 英文关键词 model predictive control copier system identification toner supply whale optimization algorithm |
| 基金项目 国家自然科学基金项目(61972302), 陕西省重点技术研发计划基金项目(2021ZDLGY07–01), 河北省三三三人才工程资助项目(C20231172)资助. |
|
| 中文摘要 |
| 维持碳粉浓度稳定以确保印刷质量是复印机工程应用中的关键难题. 为解决复印机碳粉供应控制系统存
在的长时滞与不确定性问题, 本文设计了一种基于鲁棒模型预测控制策略. 首先, 采用系统辨识法获得碳粉供应系
统物理特性的数学模型; 其次, 针对复印机碳粉供应系统构建鲁棒模型预测控制器, 并引入改进的鲸鱼优化算法对
控制器参数进行优化; 最后, 基于控制器代价函数求解最优碳粉补充量, 对系统持续实施在线滚动优化控制. 试验结
果显示, 相较于应用广泛的PI控制器, 基于鲁棒模型预测的碳粉供应控制器在执行固定、递增和随机图像覆盖率任
务时, 碳粉浓度变化均方根误差分别降低了8.0%, 4.8% 和25.0%, 标准差分别降低了1.4%, 5.4%和14.4%, 表明该方
法可有效降低印刷过程中碳粉浓度变化离散程度, 具有更优越的动态性能控制效果. |
| 英文摘要 |
| Maintaining the stability of toner concentration to ensure printing quality is a key problem in the engineering
application of copiers. In order to solve the problem of long time delay and uncertainty in the toner supply control system
of copier, a predictive control strategy based on robust model is designed. Firstly, the mathematical model of the physical
characteristics of the toner supply system is obtained by using the system identification method; Then, a robust model
predictive controller is designed for the toner supply system of the copier, and an improved whale optimization algorithm
(WOA) is introduced to optimize the controller parameters; Finally, the optimal toner supplement is calculated based on
the cost function of the controller, and the on-line rolling optimization control of the system is implemented continuously.
The experimental results show that compared with the widely used PI controller, the robust model prediction-based toner
supply controller has decreased the root-mean-square error of toner concentration change by 8.0%, 4.8% and 25.0%, and
the standard deviation by 1.4%, 5.4% and 14.4% in the tasks of fixed, incremental and stochastic image coverage, which
indicates that this method can effectively reduce the dispersion of toner concentration in the printing process, and has a
better dynamic performance control effect. |
|
|
|
|
|