引用本文:孙哲,黄凡杰,周袁,陈博,赵晴宇,王海.下肢康复外骨骼机器人新型固定时间滑模控制[J].控制理论与应用,2026,43(2):375~385.[点击复制]
SUN Zhe,HUANG Fan-jie,ZHOU Yuan,CHEN Bo,ZHAO Qing-yu,WANG Hai.Novel fixed-time sliding mode control of lower limb rehabilitation exoskeleton robots[J].Control Theory & Applications,2026,43(2):375~385.[点击复制]
下肢康复外骨骼机器人新型固定时间滑模控制
Novel fixed-time sliding mode control of lower limb rehabilitation exoskeleton robots
摘要点击 115  全文点击 17  投稿时间:2024-01-09  修订日期:2025-03-11
查看全文  查看/发表评论  下载PDF阅读器   HTML
DOI编号  10.7641/CTA.2024.40018
  2026,43(2):375-385
中文关键词  下肢康复外骨骼  滑模控制  步态轨迹跟踪  固定时间收敛
英文关键词  lower limb rehabilitation exoskeleton  sliding mode control  gait trajectory tracking  fixed-time convergence
基金项目  国家自然科学基金项目(62003305), 浙江省自然科学基金项目(LQ21F030015), 浙江省重点研发计划项目(2022C03029, 2024C03040), 湖州市公 益性应用研究项目(2022GZ15)资助.
作者单位E-mail
孙哲 浙江工业大学信息工程学院 zsun@aliyun.com 
黄凡杰 浙江工业大学信息工程学院  
周袁 浙江工业大学信息工程学院  
陈博* 浙江工业大学信息工程学院 bchen@zjut.edu.cn 
赵晴宇 杭州程天科技发展有限公司  
王海 莫道克大学 工程与能源学院  
中文摘要
      本文针对下肢康复外骨骼机器人的步态轨迹跟踪问题提出了一种新型固定时间收敛滑模控制方法. 首先, 通过机理分析实现下肢康复外骨骼机器人动力学建模; 其次, 设计了一种新型非奇异快速终端滑动面, 实现固定时 间收敛, 有效提升收敛速度. 基于此滑动面设计了针对下肢康复外骨骼机器人的新型滑模控制策略, 运用Lyapunov 判据证明了控制系统的稳定性和全局固定时间收敛特性; 最后, 通过下肢康复外骨骼机器人实验平台对所提控制 方法进行实验验证. 实验结果表明, 本文所提的控制方法能实现下肢外骨骼轨迹跟踪误差的快速收敛, 使稳态误差 维持在1 ?左右, 具备应对不同重量(61 kg和80 kg)穿戴者和不同步速(步态周期为8 s和6 s)参考轨迹的强鲁棒性, 并 且对抖振现象具有一定的抑制作用.
英文摘要
      In this paper, a novel fixed-time convergent sliding mode control method is proposed for the gait trajectorytracking problem of lower limb rehabilitation exoskeleton robots. Firstly, the dynamic model of a lower limb rehabilitation exoskeleton robot is achieved through mechanism analysis. Then, a novel nonsingular fast terminal sliding surface is designed to achieve fixed-time convergence and effectively enhance the convergence rate. A new sliding mode control strategy for lower limb rehabilitation exoskeleton robots is designed based on this sliding surface, and the stability and global fixed-time convergence characteristics of the control system are proved by using the Lyapunov criterion. Finally, the proposed control method is experimentally validated via a lower limb rehabilitation exoskeleton robot experimental platform. The experimental results show that the control method proposed in this paper can achieve rapid convergence of lower limb exoskeleton trajectory tracking error, with the error converging to about 1? , strong robustness against wearers of different weights (61 kg and 80 kg) and different gait trajectories (with the period of 8 s and 6 s), and has a certain inhibitory effect on chattering phenomenon.