| 引用本文: | 陈强,苏洋,施卉辉,何熊熊.非参数不确定旋转电机系统空间自适应重复学习控制[J].控制理论与应用,2026,43(1):169~175.[点击复制] |
| CHEN Qiang,SU Yang,SHI Hui-hui,HE Xiong-xiong.Spatial adaptive repetitive learning control for rotating motor systems with non-parametric uncertainties[J].Control Theory & Applications,2026,43(1):169~175.[点击复制] |
|
| 非参数不确定旋转电机系统空间自适应重复学习控制 |
| Spatial adaptive repetitive learning control for rotating motor systems with non-parametric uncertainties |
| 摘要点击 196 全文点击 24 投稿时间:2024-01-29 修订日期:2025-11-29 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2024.40082 |
| 2026,43(1):169-175 |
| 中文关键词 空间重复学习控制 自适应控制 全限幅学习律 非参数不确定动态 |
| 英文关键词 spatial repetitive learning control adaptive control fully-saturated learning law non-parametric uncertain ties |
| 基金项目 国家自然科学基金项目(U25A20452,62222315,61973274,62233016), 浙江省自然科学基金重点项目(LZ26F030004,LZ22F030007),浙江省 属高校基本科研业务费专项资金资助项目(RF–C2024001)资助. |
|
| 中文摘要 |
| 针对执行空间重复任务的非参数不确定旋转电机系统,本文提出一种空间自适应全限幅重复学习控制方
法. 通过引入空间微分算子变换,将受控系统从时间域形式转换为空间域形式.利用旋转电机的空间周期重复运行
特性,设计空间自适应全限幅重复学习控制器,实现旋转电机角速度对期望轨迹的高精度跟踪.构造空间全限幅重
复学习律、估计和补偿具有空间周期特性的非参数不确定动态,并保证估计值被限制在指定界内.最后,通过李雅
普诺夫理论分析误差的收敛性能,并给出实验结果验证所提方法的有效性. |
| 英文摘要 |
| A spatial adaptive fully-saturated repetitive learning control method is proposed for rotating motor systems
that perform spatial repetitive tasks. The spatial differential operator is introduced to transform the controlled system from
the time domain to the spatial domain. By utilizing the spatial periodic repetitive operation characteristics of rotating motor
systems, a spatial adaptive fully-saturated repetitive learning controller is designed to achieve high-precision tracking of
desired trajectory for the angular velocity of rotating motor. The fully-saturated repetitive learning law is constructed to
estimate and compensate for system non-parametric uncertainties with spatial periodic characteristics, and the estimated
value can be limited within the specified bounds. Finally, the error convergence is analyzed through the Lyapunov stability
theory, and simulation results are provided to verify the effectiveness of the proposed method. |
|
|
|
|
|