自抗扰控制对具边界扰动和区间内反阻尼的波动方程的镇定
Active disturbance rejection control to stabilize one-dimensional wave equation with interior domain anti-damping and boundary disturbance
摘要点击 848  全文点击 592  投稿时间:2013-09-13  修订日期:2013-11-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.30966
  2013,30(12):1553-1563
中文关键词  自抗扰控制  波动方程  区域内反阻尼  不确定性
英文关键词  active disturbance rejection control  wave equation  in-domain anti-damping  boundary control
基金项目  国家自然科学基金资助项目(61273129)
学科分类代码  
作者单位E-mail
赵志良 陕西师范大学数学与信息科学学院 gsdxzzl@mail.ustc.edu.cn 
郭宝珠 中国科学院数学与系统科学研究院系统科学研究所  
中文摘要
      本文讨论边界具有外部扰动和区域内具有反阻尼的一维波动方程的的镇定问题. 主要的方法是后退反演变换和自抗扰控制方法. 即通过扩张状态观测器将扰动在线估计并在反馈控制中实时消除. 本文在扩张状态观测器中使用了两种增益调整策略——常数高增益与时变增益. 为避免常数高增益带来的峰值问题, 在控制环节中使用了饱和方法. 时变的增益可以在很大程度上减少扩张状态观测器中由于常数高增益引起的峰值问题同时可以达到完全消除干扰的镇定效果.
英文摘要
      The control objective is the asymptotical stabilization with disturbance rejection or the practical stabilization with disturbance attenuation. Back-stepping method and active disturbance rejection control (ADRC) approach are adopted in investigation. It is shown that the disturbance can be estimated in real time through an extended state observer (ESO) and be canceled in the feedback loop. Both constant gain and time-varying gain are used in ESO. To avoid the peaking value problem caused by the constant high gain in ESO, we used the saturated function method in feedback loop. The time-varying gain in ESO is first time used in an infinite-dimensional system to achieve complete isturbance rejection and peaking value reduction.