自抗扰控制技术在微机电换能器中的应用
Application of active disturbance rejection control to micro-electro-mechanism system transducers
摘要点击 507  全文点击 892  投稿时间:2013-09-26  修订日期:2013-12-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2013.31016
  2013,30(12):1543-1552
中文关键词  微机电系统  微机电陀螺仪  静电执行器  自抗扰控制  鲁棒性
英文关键词  micro-electro-mechanism system (MEMS)  MEMS gyroscope  electro-static actuator  active disturbance rejection control  robustness
基金项目  
学科分类代码  
作者单位E-mail
董莉莉 克里夫兰州立大学 L.Dong34@csuohio.edu 
中文摘要
      自抗扰技术, 作为一门新兴的鲁棒控制技术, 能够成功补偿微机电制造上的缺陷以及周围环境的扰动, 从而提高微机电传感器和执行器的性能, 增加它们的测量及移动精度. 本文介绍了自抗扰技术在微机电陀螺仪和静电执行器两大微机电换能器上的应用. 通过使用此项控制技术, 微机电陀螺仪可精确测量并输出匀速及时变角速度.此外, 一种模型辅助自抗扰控制器被首次应用到微执行器上. 此模型辅助自抗扰控制器建立在部分模型已知的基础上. 它能够在外干扰存在的情况下, 把静电执行器的位移范围提高到电容间距的99%. 模型辅助自抗扰控制器的抗噪声能力也优于传统的自抗扰控制器. 作者用仿真和实验结果向读者展示了自抗扰技术在微机电领域的鲁棒性, 有效性和实用性.
英文摘要
      Active disturbance rejection control (ADRC) is an emerging robust control technology. It improves the performance of micro-electro-mechanism system (MEMS) sensors and actuators and increases their measurement and displacement accuracies through effectively compensating the imperfections in micro-fabrications and environmental variations. The applications of an ADRC to MEMS gyroscopes and electrostatic actuators are introduced in this paper. The ADRC facilitates accurate sensing of both constant and time-varying rotation rates for MEMS gyroscopes. In addition, an alternative ADRC is initially applied to an electro-static actuator. The alternative ADRC is constructed based on partially known model information. It drives and stabilizes the displacement output of an electrostatic actuator to 99% of full capacitor gap despite of the presence of disturbance. The alternative ADRC also has better noise rejection capability than traditional ADRC. Simulation and experimental results demonstrate the robustness, effectiveness and feasibility of the ADRC in MEMS area.