热传导方程的时间最优脉冲控制问题的有限元逼近
Finite element approximations of impulsive time optimal control problems for heat equations
摘要点击 351  全文点击 89  投稿时间:2021-10-15  修订日期:2022-09-23
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.10980
  2022,39(9):1619-1623
中文关键词  最优时间  脉冲  最优控制  有限元逼近  收敛性
英文关键词  optimal time  impulse  optimal control  finite element approximation  convergence analysis
基金项目  国家重点研发计划课题(2018AAA0100902), 浙江省自然科学基金项目(LY19A010024, LZ21A010001), 浙江省教育厅一般项目(Y202044208)资助.
作者单位E-mail
黄景芳 浙大宁波理工学院 计算机与数据工程学院 huangjf@zju.edu.cn 
刘康生 浙江大学 数学科学学院 ksliu@zju.edu.cn 
于欣 浙大宁波理工学院 计算机与数据工程学院  
中文摘要
      时间最优控制问题是一类典型的最优控制问题, 受到研究者的广泛关注. 脉冲控制是一种在工程控制中被广泛应用的控制方式. 偏微分方程描述系统的最优控制问题的数值逼近的收敛性为数值求解方法的可行性提供了定性依据. 本文研究热传导方程的时间最优脉冲控制问题的有限元逼近的收敛性. 通过利用投影算子的特性和系统状态的误差估计, 证明了逼近问题的最优时间收敛到原问题的最优时间. 由此进一步利用原问题最优控制的bangbang性证明了最优控制的收敛性.
英文摘要
      The time optimal control problem is a kind of typical optimal control problem, which has attracted the extensive attention of researchers. Impulsive control has been widely used in engineering control. The convergence of numerical approximations of optimal control problems for the systems governed by partial differential equations provides a qualitative basis for the feasibility of the numerical method. In this paper, the convergence of finite element approximation for the impulsive time optimal control problem of heat equations is studied. By making use of the properties of the projection operator and the error estimates of the system state, we prove that the optimal time of the approximation problem converges to the optimal time of the original problem. Furthermore, the convergence of the optimal control is proved by means of the bang-bang property of the optimal control for the original problem.