| 引用本文: | 赵嘉,陈蔚昌,肖人彬,潘正祥,崔志华,王晖.面向流形数据的共享近邻和二阶K近邻密度峰值聚类算法[J].控制理论与应用,2026,43(2):386~394.[点击复制] |
| ZHAO Jia,CHEN Wei-chang,XIAO Ren-bin,PAN Zheng-xiang,CUI Zhi-hua,WANG Hui.Density peaks clustering algorithm based on shared nearest neighbor and second-order K nearest neighbor for manifold data[J].Control Theory & Applications,2026,43(2):386~394.[点击复制] |
|
| 面向流形数据的共享近邻和二阶K近邻密度峰值聚类算法 |
| Density peaks clustering algorithm based on shared nearest neighbor and second-order K nearest neighbor for manifold data |
| 摘要点击 130 全文点击 21 投稿时间:2023-08-22 修订日期:2025-02-25 |
| 查看全文 查看/发表评论 下载PDF阅读器 HTML |
| DOI编号 10.7641/CTA.2024.30570 |
| 2026,43(2):386-394 |
| 中文关键词 密度峰值聚类 逆近邻 共享近邻 二阶K近邻 流形数据 |
| 英文关键词 density peaks clustering reverse nearest neighbor shared nearest neighbor second-order K nearest neighbor manifold data |
| 基金项目 国家自然科学基金项目(62466037, 62166027)资助. |
|
| 中文摘要 |
| 密度峰值聚类算法能够快速高效处理数据集且无需迭代. 但该算法在处理流形数据时, 易错选类簇中心和
错误分配样本. 因此, 本文提出面向流形数据的共享近邻和二阶K近邻密度峰值聚类(DPC–SKNN)算法. 首先, 该算
法引入逆近邻和共享近邻重新定义局部密度, 充分考虑样本的局部信息和全局信息, 使算法易找到正确的流形类簇
中心; 其次, 将样本的关联关系分为K近邻点、二阶K近邻点和非近邻点3种情况, 设计K近邻的分配策略, 增强同一
类簇样本的相似性, 提高样本分配的准确率. 将本文算法与8种算法在流形和UCI数据集进行对比, 实验结果表明,
DPC-SKNN算法在上述数据集上均获得了不错的聚类结果. |
| 英文摘要 |
| The density peaks clustering algorithm can deal with datasets quickly and efficiently without iteration. However, it can sometimes wrongly select cluster centers and misallocate samples when processing manifold data. Therefore,
this paper proposes the density peaks clustering algorithm based on shared nearest neighbor and second-order K nearest
neighbor for manifold data (DPC-SKNN) algorithm. Firstly, the algorithm introduces reverse nearest neighbors and shares
nearest neighbors to redefine local density, fully considering both local and global information of samples, making the algorithm easier to identify correct cluster centers. Secondly, the association relationship of the samples is divided into three
types: K nearest neighbors, second-order K nearest neighbors, and non-nearest neighbors, and design allocation strategies
for K-nearest neighbors to enhance similarity among samples within the same cluster, thereby improving sample allocation
accuracy. DPC-SKNN is compared with eight algorithms on manifold and UCI datasets, and the experimental results show
that the DPC-SKNN algorithm obtains good clustering results on all the above datasets. |
|
|
|
|
|