引用本文:张新雨,任梦姣,弋英民,张子悦,武舒月.一种混合自适应重采样的智能粒子滤波[J].控制理论与应用,2026,43(2):346~354.[点击复制]
ZHANG Xin-yu,REN Meng-jiao,YI Ying-min,ZHANG Zi-yue,WU Shu-yue.An intelligent particle filter with hybrid adaptive resampling[J].Control Theory & Applications,2026,43(2):346~354.[点击复制]
一种混合自适应重采样的智能粒子滤波
An intelligent particle filter with hybrid adaptive resampling
摘要点击 137  全文点击 21  投稿时间:2023-09-05  修订日期:2024-10-16
查看全文  查看/发表评论  下载PDF阅读器   HTML
DOI编号  10.7641/CTA.2024.30599
  2026,43(2):346-354
中文关键词  信息论与信号处理  状态估计  粒子滤波  M-H重采样  高斯变异  自适应方差
英文关键词  information theory and signal processing  state estimation  particle filter  M-H resampling  Gaussian variation  adaptive variance
基金项目  国家自然科学基金项目(62003261, 62273273, 62073258), 陕西省科技创新团队项目(2023―CX―TD―01)资助.
作者单位E-mail
张新雨* 西安理工大学 陕西省复杂系统控制与智能信息处理重点实验室 xhyzzxy@126.com 
任梦姣 西安理工大学 陕西省复杂系统控制与智能信息处理重点实验室  
弋英民 西安理工大学 陕西省复杂系统控制与智能信息处理重点实验室  
张子悦 西安理工大学 陕西省复杂系统控制与智能信息处理重点实验室  
武舒月 西安理工大学 陕西省复杂系统控制与智能信息处理重点实验室  
中文摘要
      粒子滤波对非线性非高斯系统具有较好的估计性能, 但引入重采样技术后, 粒子多样性匮乏一直是影响粒 子滤波估计精度的关键问题. 为此, 本文提出一种混合自适应重采样的智能粒子滤波方法, 该方法首先在混合自适 应Metropolis-Hastings(M-H)重采样基础上设计了高斯变异的自适应协方差矩阵计算函数; 其次, 提出了采用“优胜 劣汰”模式的接受拒绝准则函数; 最后, 对有效粒子集合进行实时更新, 改善了粒子集合的粒子质量并提高了粒子 滤波的精度. 利用两个一维非线性模型和一个高维非线性模型进行仿真, 以验证本文方法的有效性. 实验结果表明, 与现有重采样方法相比, 本文方法能够有效地改善重采样后的粒子质量, 提高粒子滤波的估计精度.
英文摘要
      Particle filter (PF) has good estimation performance for nonlinear and non-Gaussian systems, but the lack of particle diversity has always been the vital problem affecting the estimation accuracy of PF after the introduction of resampling technology. Therefore, an intelligent PF method based on hybrid adaptive resampling is proposed. Firstly, a function of computing the covariance matrix adaptively for Gaussian variation is designed in this method on the basis of hybrid adaptive Metropolis-Hastings (M-H) resampling. Secondly, an acceptance and rejection criterion function using the mode of survival of the fittest is developed. Finally, the effective particle set is updated in real time to improve the quality of the particle set and the accuracy of the PF. Two one-dimensional nonlinear models and one high-dimensional nonlinear model are used to verify the effectiveness of the proposed method. Experimental results show that the proposed method can effectively improve the quality of the particle after resampling and improve the estimation accuracy of the PF compared with the existing resampling methods.