一种间歇过程的综合预测迭代学习控制方法
An integrated predictive iterative learning control for batch process
摘要点击 2330  全文点击 1378  投稿时间:2012-05-07  修订日期:2012-07-03
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/j.issn.1000-8152.2012.8.LCTA120465
  2012,29(8):1069-1072
中文关键词  迭代学习控制  模型预测控制  综合控制  间歇过程
英文关键词  iterative learning control  model predictive control  integrated control  batch process
基金项目  This work was supported by the the National Basic Research Program of China ‘973 Program’ (No. 2012CB720505), the National Natural Science Foundation of China (Nos. 61174105, 60874049), and the Key Laboratory of Advanced Process Control for Light Industry (Jiangnan University), Ministry of Education, China.
作者单位E-mail
陈宸 清华大学 自动化系 chenc3290@gmail.com 
熊智华 清华大学 自动化系  
中文摘要
      为了提高迭代学习控制方法在间歇过程轨迹跟踪问题中的收敛速度, 本文将批次间的比例型迭代学习控制与批次内的模型预测控制相结合, 提出了一种综合应用方法. 首先根据间歇过程的线性模型, 预测出比例型迭代学习控制的系统输出, 然后在批次内采用模型预测控制, 通过极小化一个二次型目标函数来获得控制增量. 该方法可使系统输出跟踪期望轨迹的速度比比例型迭代学习控制方法更快些. 最后通过仿真实例验证了该方法的有效性.
英文摘要
      In order to improve the convergence speed of iterative learning control (ILC), an integrated scheme for tracking problem of batch process is proposed by combining batch-to-batch P-type ILC and within-batch model predictive control (MPC). Based on a predefined batch-wise linear model of the process, the output of traditional P-type ILC can be predicted, and then MPC is induced to minimize a quadratic objective function within the current batch. The input is updated within the batch so that the output may approach the reference trajectory faster. An illustrative example is presented to demonstrate the performance of the proposed scheme.